Files
ReactionSystems/grammar_separated/src/assert.lalrpop

295 lines
9.6 KiB
Plaintext
Raw Normal View History

use std::str::FromStr;
use lalrpop_util::ParseError;
use assert::relabel;
use rsprocess::{set, label};
use rsprocess::translator::Translator;
use crate::custom_error;
grammar(translator: &mut Translator);
extern {
type Error = custom_error::UserError;
}
// -----------------------------------------------------------------------------
// Helpers
// -----------------------------------------------------------------------------
// order
match {
"!", "!=", "%", "&&", "'", "(", ")", "*", "+", ",", "-", "..", "/", ":",
"::", ";", "<", "<=", "=", "==", ">", ">=", "AllInhibitors", "AllReactants",
"AvailableEntities", "Context", "Entities", "Inhibitors",
"InhibitorsPresent", "Products", "Reactants", "ReactantsAbsent",
"SystemContext", "SystemEntities", "[", "\"", "]", "^", "^^", "edge",
"else", "empty", "false", "for", "if", "in", "label", "length", "let",
"neighbours", "not", "rand", "return", "source", "system", "target", "then",
"toel", "tostr", "true", "{", "||", "}",
} else {
r"[0-9]+" => NUMBER
} else {
r"([[:alpha:]])([[:word:]])*" => WORD
// r"(\p{L}|\p{Emoji})(\p{L}|\p{Emoji}|\p{Dash}|\p{N})*" => WORD,
} else {
r#""[^"]+""# => PATH, // " <- ignore comment, its for the linter in emacs
} else {
_
}
// matches words (letter followed by numbers, letters or _)
Literal: String = {
WORD => <>.into(),
};
Num: i64 = {
<sign: "-"?> <start: @L> <n: NUMBER> <end: @R> =>? {
if sign.is_some() {
i64::from_str(n)
.map(|n| -n)
.map_err(|_| ParseError::User {
error: custom_error::UserError {
token: (start, n.into(), end),
error: custom_error::UserErrorTypes::NumberTooBigi64
}
})
} else {
i64::from_str(n)
.map_err(|_| ParseError::User {
error: custom_error::UserError {
token: (start, n.into(), end),
error: custom_error::UserErrorTypes::NumberTooBigi64
}
})
}
}
};
// macro for matching sequence of patterns with C as separator
Separated<T, C>: Vec<T> = {
<mut v:(<T> C)+> <e:T?> => match e {
None => v,
Some(e) => {
v.push(e);
v
}
}
};
Separated_Or<T, C>: Vec<T> = {
<v: T> => vec![v],
<v: Separated<T, C>> => v
}
Separated_Empty<LP, T, C, RP>: Vec<T> = {
LP RP => vec![],
LP <v: T> RP => vec![v],
LP <v: Separated<T, C>> RP => v
}
// -----------------------------------------------------------------------------
// SetParser
// -----------------------------------------------------------------------------
Set: set::Set = {
<s: Separated_Empty<"{", Literal, ",", "}">> =>
set::Set::from(s.into_iter().map(|t| translator.encode(t))
.collect::<Vec<_>>())
};
// -----------------------------------------------------------------------------
// LabelParser
// -----------------------------------------------------------------------------
Label: label::Label = {
"["
"Entities" ":" <e: Set> ","
"Context" ":" <c: Set> ","
"Reactants" ":" <r: Set> ","
"ReactantsAbsent" ":" <r_a: Set> ","
"Inhibitors" ":" <i: Set> ","
"InhibitorsPresent" ":" <i_p: Set> ","
"Products" ":" <p: Set> ","?
"]" => label::Label::create(e, c, r, r_a, i, i_p, p)
}
// -----------------------------------------------------------------------------
// AssertParser
// -----------------------------------------------------------------------------
pub Assert: Box<relabel::Assert> = {
"label" "{" <f: AssertTree> "}" =>
Box::new(relabel::Assert{tree: f}),
};
AssertTree: relabel::Tree = {
<t1: AssertTree2> <t2: AssertTree> =>
relabel::Tree::Concat(Box::new(t1), Box::new(t2)),
<t: AssertTree2> => t,
}
AssertTree2: relabel::Tree = {
#[precedence(level="1")]
"if" <e: AssertExpression>
"then" "{" <t: AssertTree> "}" ";"? =>
relabel::Tree::If(Box::new(e), Box::new(t)),
#[precedence(level="0")]
"if" <e: AssertExpression>
"then" "{" <t1: AssertTree> "}"
"else" "{" <t2: AssertTree> "}" ";"? =>
relabel::Tree::IfElse(Box::new(e), Box::new(t1), Box::new(t2)),
"let" <v: AssertVariable> <q: AssertQualifier?> "=" <e: AssertExpression>
";"
=> relabel::Tree::Assignment(v, q, Box::new(e)),
"return" <e: AssertExpression> ";" =>
relabel::Tree::Return(Box::new(e)),
"for" <v: AssertVariable> "in" <r: AssertRange> "{" <t: AssertTree> "}" ";"?
=> relabel::Tree::For(v, r, Box::new(t)),
}
AssertVariable: relabel::Variable = {
#[precedence(level="0")]
"label" => relabel::Variable::Special(relabel::Special::Label),
"edge" => relabel::Variable::Special(relabel::Special::Edge),
#[precedence(level="1")]
<v: Literal> => relabel::Variable::Id(v),
}
AssertExpression: relabel::Expression = {
#[precedence(level="100")]
<unp: AssertUnaryPrefix> "(" <e: AssertExpression> ")" =>
relabel::Expression::Unary(unp, Box::new(e)),
#[precedence(level="50")]
<e: AssertExpression> "." <uns: AssertUnarySuffix> =>
relabel::Expression::Unary(uns, Box::new(e)),
#[precedence(level="100")] #[assoc(side="left")]
"(" <e1: AssertExpression> <b: AssertBinary> <e2: AssertExpression> ")" =>
relabel::Expression::Binary(b, Box::new(e1), Box::new(e2)),
#[precedence(level="100")]
<b: AssertBinaryPrefix>
"(" <e1: AssertExpression> "," <e2: AssertExpression> ")" =>
relabel::Expression::Binary(b, Box::new(e1), Box::new(e2)),
#[precedence(level="0")]
<t: AssertTerm> => t,
}
AssertTerm: relabel::Expression = {
"true" => relabel::Expression::True,
"false" => relabel::Expression::False,
<v: AssertVariable> => relabel::Expression::Var(v),
// If changing IntegerType in assert.rs, also change from Num to another
// similar parser with different return type
<i: Num> => relabel::Expression::Integer(i),
<lab: Label> => relabel::Expression::Label(Box::new(lab)),
<set: Set> => relabel::Expression::Set(set),
"'" <el: Literal> "'" =>
relabel::Expression::Element(translator.encode(el)),
// strings
PATH => relabel::Expression::String(<>.trim_end_matches("\"")
.trim_start_matches("\"")
.to_string()),
// allow arbitrary parenthesis
"(" <e: AssertExpression> ")" => e,
}
AssertRange: relabel::Range = {
"{" <e: AssertExpression> "}" =>
relabel::Range::IterateOverSet(Box::new(e)),
"{" <e1: AssertExpression> ".." <e2: AssertExpression> "}" =>
relabel::Range::IterateInRange(Box::new(e1), Box::new(e2)),
}
AssertUnaryPrefix: relabel::Unary = {
"not" => relabel::Unary::Not,
"rand" => relabel::Unary::Rand,
}
AssertUnarySuffix: relabel::Unary = {
#[precedence(level="0")]
"empty" => relabel::Unary::Empty,
"length" => relabel::Unary::Length,
"tostr" => relabel::Unary::ToStr,
"toel" => relabel::Unary::ToEl,
#[precedence(level="1")]
<q: AssertQualifier> => relabel::Unary::Qualifier(q),
}
AssertQualifierRestricted: relabel::QualifierRestricted = {
"Entities" => relabel::QualifierRestricted::Entities,
"Context" => relabel::QualifierRestricted::Context,
"Reactants" => relabel::QualifierRestricted::Reactants,
"ReactantsAbsent" => relabel::QualifierRestricted::ReactantsAbsent,
"Inhibitors" => relabel::QualifierRestricted::Inhibitors,
"InhibitorsPresent" => relabel::QualifierRestricted::InhibitorsPresent,
"Products" => relabel::QualifierRestricted::Products,
}
AssertQualifierLabel: relabel::QualifierLabel = {
"AvailableEntities" => relabel::QualifierLabel::AvailableEntities,
"AllReactants" => relabel::QualifierLabel::AllReactants,
"AllInhibitors" => relabel::QualifierLabel::AllInhibitors,
}
AssertQualifierSystem: relabel::QualifierSystem = {
"SystemEntities" => relabel::QualifierSystem::Entities,
"SystemContext" => relabel::QualifierSystem::Context,
}
AssertQualifierEdge: relabel::QualifierEdge = {
"source" => relabel::QualifierEdge::Source,
"target" => relabel::QualifierEdge::Target,
}
AssertQualifierNode: relabel::QualifierNode = {
"neighbours" => relabel::QualifierNode::Neighbours,
"system" => relabel::QualifierNode::System,
}
AssertQualifier: relabel::Qualifier = {
<q: AssertQualifierSystem> => relabel::Qualifier::System(q),
<q: AssertQualifierLabel> => relabel::Qualifier::Label(q),
<q: AssertQualifierRestricted> => relabel::Qualifier::Restricted(q),
<q: AssertQualifierEdge> => relabel::Qualifier::Edge(q),
<q: AssertQualifierNode> => relabel::Qualifier::Node(q),
}
AssertBinary: relabel::Binary = {
"&&" => relabel::Binary::And,
"||" => relabel::Binary::Or,
"^^" => relabel::Binary::Xor,
"<" => relabel::Binary::Less,
"<=" => relabel::Binary::LessEq,
">" => relabel::Binary::More,
">=" => relabel::Binary::MoreEq,
"==" => relabel::Binary::Eq,
"!=" => relabel::Binary::NotEq,
"+" => relabel::Binary::Plus,
"-" => relabel::Binary::Minus,
"*" => relabel::Binary::Times,
"^" => relabel::Binary::Exponential,
"/" => relabel::Binary::Quotient,
"%" => relabel::Binary::Reminder,
"::" => relabel::Binary::Concat,
}
AssertBinaryPrefix: relabel::Binary = {
"substr" => relabel::Binary::SubStr,
"min" => relabel::Binary::Min,
"max" => relabel::Binary::Max,
"commonsubstr" => relabel::Binary::CommonSubStr,
}