Fix translator, bisimulation now working

This commit is contained in:
elvis
2025-07-24 20:30:20 +02:00
parent 4c9ee896e1
commit 2d446a0f34

View File

@ -1,6 +1,7 @@
use std::cell::RefCell;
use std::collections::hash_map::Entry;
use std::collections::{BTreeSet, HashMap, HashSet};
use std::fmt::Debug;
use std::rc::Rc;
use petgraph::visit::{ EdgeRef, GraphBase, IntoEdgeReferences, IntoEdges, IntoNeighborsDirected, IntoNodeReferences, NodeCount };
@ -213,23 +214,14 @@ type GraphIdType = u32;
type NodeType = (GraphIdType, NodeIdType);
trait NodeTrait {
fn graph(&self) -> GraphIdType;
}
impl NodeTrait for NodeType {
fn graph(&self) -> GraphIdType {
self.0
}
}
trait NextId<T> {
fn next_id_of_graph(&mut self, graph_id: GraphIdType) -> T;
trait NextId<From, T> {
fn next_id_of_graph(&mut self, val: From) -> T;
}
#[derive(Debug)]
struct Translator<From, To, State>
where
State: NextId<To>
State: NextId<From, To>
{
data: HashMap<From, To>,
reverse_data: HashMap<To, From>,
@ -240,7 +232,7 @@ impl<From, To, State> Translator<From, To, State>
where
To: std::hash::Hash + std::cmp::Eq + Copy,
From: std::hash::Hash + std::cmp::Eq + Clone,
State: NextId<To>
State: NextId<From, To>
{
pub fn new() -> Self
where
@ -251,11 +243,11 @@ where
last_id: State::default() }
}
pub fn encode(&mut self, val: From, graph_id: GraphIdType) -> To
pub fn encode(&mut self, val: From) -> To
{
let id = *(self.data.entry(val.clone())
.or_insert(
self.last_id.next_id_of_graph(graph_id)
self.last_id.next_id_of_graph(val.clone())
));
self.reverse_data.insert(id, val);
id
@ -271,7 +263,7 @@ where
}
}
#[derive(Clone, Copy, Hash, PartialEq, Eq, PartialOrd, Ord)]
#[derive(Clone, Copy, Hash, PartialEq, Eq, PartialOrd, Ord, Debug)]
struct NodeState<const N: usize> {
last_ids: [u32; N],
}
@ -288,91 +280,95 @@ impl<const N: usize> Default for NodeState<N> {
}
}
impl<const N: usize> NextId<NodeType> for NodeState<N> {
fn next_id_of_graph(&mut self, graph_id: u32) -> NodeType {
let graph_id_usize = graph_id as usize;
impl<const N: usize, T> NextId<(T, GraphIdType), NodeType> for NodeState<N> {
fn next_id_of_graph(&mut self, val: (T, GraphIdType)) -> NodeType {
let graph_id_usize = val.1 as usize;
if graph_id_usize > self.last_ids.len() {
panic!()
}
self.last_ids[graph_id_usize] += 1;
(graph_id, self.last_ids[graph_id_usize])
(val.1, self.last_ids[graph_id_usize])
}
}
type MyTranslator<From, const N: usize> = Translator<(From, GraphIdType), NodeType, NodeState<N>>;
type Block = Vec<NodeType>;
type CounterImage = HashMap<NodeType, Vec<NodeType>>;
type NodeToBlockVec = HashMap<NodeType, Rc<RefCell<FineBlock>>>;
type CoarsePartition = Vec<Rc<CoarseBlock>>;
type FineBlockPointer = Rc<RefCell<FineBlock>>;
type CoarseBlockPointer = Rc<CoarseBlock>;
type CounterimageGrouped = HashMap<Block, CounterImageGroup>;
type BackEdges = HashMap<NodeType, Vec<NodeType>>;
type NodeToBlock = HashMap<NodeType, Rc<RefCell<SimpleBlock>>>;
type CompoundPartition = Vec<Rc<CompoundBlock>>;
type FineBlockPointer = Rc<RefCell<SimpleBlock>>;
type CompoundBlockPointer = Rc<CompoundBlock>;
type BackEdgesGrouped = HashMap<Block, BackEdgesGroup>;
struct FineBlock {
values: Block,
coarse_block_that_supersets_self: Rc<CoarseBlock>
struct SimpleBlock {
block: Block,
coarse_block_that_supersets_self: Rc<CompoundBlock>
}
#[derive(Clone)]
struct CoarseBlock {
values: Block,
fine_blocks_that_are_subsets_of_self: RefCell<Vec<Rc<RefCell<FineBlock>>>>,
struct CompoundBlock {
block: Block,
simple_blocks_subsets_of_self: RefCell<Vec<Rc<RefCell<SimpleBlock>>>>,
}
impl CoarseBlock {
fn add_fine_block(&self, fine_block: Rc<RefCell<FineBlock>>) {
self.fine_blocks_that_are_subsets_of_self
impl CompoundBlock {
fn add_simple_block(&self, fine_block: Rc<RefCell<SimpleBlock>>) {
self.simple_blocks_subsets_of_self
.borrow_mut()
.push(fine_block);
}
fn remove_fine_block(&self, fine_block: &Rc<RefCell<FineBlock>>) {
self.fine_blocks_that_are_subsets_of_self
fn remove_simple_block(&self, fine_block: &Rc<RefCell<SimpleBlock>>) {
self.simple_blocks_subsets_of_self
.borrow_mut()
.retain(|x| !Rc::ptr_eq(x, fine_block));
}
fn fine_block_count(&self) -> usize {
self.fine_blocks_that_are_subsets_of_self.borrow().len()
fn simple_block_count(&self) -> usize {
self.simple_blocks_subsets_of_self.borrow().len()
}
}
struct CounterImageGroup {
block: Rc<RefCell<FineBlock>>,
struct BackEdgesGroup {
block: Rc<RefCell<SimpleBlock>>,
subblock: Block,
}
trait HasValues {
fn values(&self) -> Block;
trait HasBlock {
fn block(&self) -> Block;
}
impl HasValues for FineBlockPointer {
fn values(&self) -> Block {
(**self).borrow().values.clone()
impl HasBlock for FineBlockPointer {
fn block(&self) -> Block {
(**self).borrow().block.clone()
}
}
impl HasValues for CoarseBlock {
fn values(&self) -> Block {
self.values.clone()
impl HasBlock for CompoundBlock {
fn block(&self) -> Block {
self.block.clone()
}
}
#[allow(clippy::type_complexity)]
fn initialization<const N: usize, G>(
graphs: &[&G; N]
) -> ( (FineBlockPointer, FineBlockPointer),
CoarsePartition,
NodeToBlockVec,
Translator<G::NodeId, NodeType, NodeState<N>> )
CompoundPartition,
NodeToBlock,
MyTranslator<G::NodeId, N> )
where
G: IntoNodeReferences + IntoEdges + IntoNeighborsDirected,
G::NodeId: std::cmp::Eq + std::hash::Hash,
G::EdgeId: std::cmp::Eq + std::hash::Hash,
G::EdgeRef: PartialEq,
G::NodeId: Debug
{
// we translate into unique ids
let mut convert_nodes: Translator<G::NodeId, NodeType, NodeState<N>>
// translate into unique ids
let mut convert_nodes: MyTranslator<G::NodeId, N>
= Translator::new();
let graph_node_indices = {
@ -381,21 +377,20 @@ where
for (pos, graph) in graphs.iter().enumerate() {
tmp.extend(
graph.node_identifiers()
.map(|val| convert_nodes.encode(val, pos as u32))
.map(|val| convert_nodes.encode((val, pos as u32)))
.collect::<Vec<_>>()
);
}
tmp
};
let coarse_initial_block_pointer: Rc<CoarseBlock> = {
let coarse_initial_block = CoarseBlock {
values: graph_node_indices.clone(),
fine_blocks_that_are_subsets_of_self: RefCell::new(vec![]),
let compound_initial_block_pointer: Rc<CompoundBlock> = {
let compound_initial_block = CompoundBlock {
block: graph_node_indices.clone(),
simple_blocks_subsets_of_self: RefCell::new(vec![]),
};
Rc::new(coarse_initial_block)
Rc::new(compound_initial_block)
};
// minor optimization: split nodes between those that have outgoing edges
@ -407,21 +402,26 @@ where
.into_iter()
.partition(
|x| {
graphs[x.graph() as usize]
let (node_id, graph_id) = convert_nodes.decode(x).unwrap();
graphs[*graph_id as usize]
.neighbors_directed(
*convert_nodes.decode(x).unwrap(),
*node_id,
Outgoing)
.count() == 0
}
);
let leaf_node_block = FineBlock {
values: leaf_node_indices,
coarse_block_that_supersets_self: Rc::clone(&coarse_initial_block_pointer),
let leaf_node_block = SimpleBlock {
block: leaf_node_indices,
coarse_block_that_supersets_self:
Rc::clone(&compound_initial_block_pointer),
};
let non_leaf_node_block = FineBlock {
values: non_leaf_node_indices,
coarse_block_that_supersets_self: Rc::clone(&coarse_initial_block_pointer),
let non_leaf_node_block = SimpleBlock {
block: non_leaf_node_indices,
coarse_block_that_supersets_self:
Rc::clone(&compound_initial_block_pointer),
};
(
@ -430,20 +430,20 @@ where
)
};
coarse_initial_block_pointer
.fine_blocks_that_are_subsets_of_self
compound_initial_block_pointer
.simple_blocks_subsets_of_self
.borrow_mut()
.extend([
Rc::clone(&leaf_node_block_pointer),
Rc::clone(&non_leaf_node_block_pointer),
]);
let node_to_block_vec = {
let node_to_block = {
let mut tmp = HashMap::new();
(*non_leaf_node_block_pointer)
.borrow()
.values
.block
.iter()
.copied()
.for_each(
@ -453,7 +453,7 @@ where
(*leaf_node_block_pointer)
.borrow()
.values
.block
.iter()
.copied()
.for_each(
@ -465,58 +465,64 @@ where
(
(leaf_node_block_pointer, non_leaf_node_block_pointer),
vec![coarse_initial_block_pointer],
node_to_block_vec,
vec![compound_initial_block_pointer],
node_to_block,
convert_nodes
)
}
fn build_counterimage<IndexHolder: HasValues, const N:usize, G>(
fn build_backedges<IndexHolder: HasBlock, const N:usize, G>(
graphs: &[&G; N],
fine_block: IndexHolder,
convert_nodes: &Translator<G::NodeId, NodeType, NodeState<N>>
) -> CounterImage
block: IndexHolder,
convert_nodes: &MyTranslator<G::NodeId, N>
) -> BackEdges
where
G: IntoNodeReferences + IntoEdges + IntoNeighborsDirected,
G::NodeId: std::cmp::Eq + std::hash::Hash,
G::EdgeId: std::cmp::Eq + std::hash::Hash,
G::EdgeRef: PartialEq,
{
let mut counterimage = HashMap::new();
let mut backedges = HashMap::new();
fine_block.values().iter().for_each(|node_index_pointer| {
counterimage.insert(
block.block().iter().for_each(|node_index_pointer| {
backedges.insert(
*node_index_pointer,
graphs[node_index_pointer.graph() as usize]
.neighbors_directed(
*convert_nodes.decode(node_index_pointer).unwrap(),
Incoming)
.collect::<HashSet<_>>()
.into_iter()
.map(|e| convert_nodes.get(&e).unwrap())
.copied()
.collect::<Vec<_>>(),
{
let (node_id, graph_id) =
convert_nodes.decode(node_index_pointer).unwrap();
graphs[*graph_id as usize]
.neighbors_directed(
*node_id,
Incoming)
.collect::<HashSet<_>>()
.into_iter()
// the back edges should be all in the same graph
.map(|e| convert_nodes.get(&(e, *graph_id)).unwrap())
.copied()
.collect::<Vec<_>>()
}
);
});
counterimage
backedges
}
fn group_by_counterimage(
counterimage: CounterImage,
node_to_block: &NodeToBlockVec,
) -> CounterimageGrouped {
let mut counterimage_grouped: CounterimageGrouped = HashMap::new();
fn group_by_backedges(
backedges: BackEdges,
node_to_block: &NodeToBlock,
) -> BackEdgesGrouped {
let mut backedges_grouped: BackEdgesGrouped = HashMap::new();
for incoming_neighbor_group in counterimage.values() {
for incoming_neighbor_group in backedges.values() {
for node in incoming_neighbor_group {
let block = Rc::clone(node_to_block.get(node).unwrap());
let key = (*block).borrow().values.clone();
let key = (*block).borrow().block.clone();
match counterimage_grouped.entry(key) {
Entry::Occupied(mut entry) => entry.get_mut().subblock.push(*node),
match backedges_grouped.entry(key) {
Entry::Occupied(mut entry) =>
entry.get_mut().subblock.push(*node),
Entry::Vacant(entry) => {
entry.insert(CounterImageGroup {
entry.insert(BackEdgesGroup {
block: Rc::clone(&block),
subblock: Vec::from([*node]),
});
@ -525,81 +531,86 @@ fn group_by_counterimage(
}
}
counterimage_grouped
backedges_grouped
}
fn split_blocks_with_grouped_counterimage(
mut counterimage_grouped: CounterimageGrouped,
node_to_block_vec: &mut NodeToBlockVec,
fn split_blocks_with_grouped_backedges(
mut backedges_grouped: BackEdgesGrouped,
node_to_block: &mut NodeToBlock,
) -> (
(Vec<FineBlockPointer>, Vec<FineBlockPointer>),
Vec<CoarseBlockPointer>,
Vec<CompoundBlockPointer>,
) {
let mut all_new_fine_blocks: Vec<Rc<RefCell<FineBlock>>> = vec![];
let mut all_removed_fine_blocks: Vec<Rc<RefCell<FineBlock>>> = vec![];
let mut new_compound_coarse_blocks: Vec<Rc<CoarseBlock>> = vec![];
let mut all_new_simple_blocks: Vec<Rc<RefCell<SimpleBlock>>> = vec![];
let mut all_removed_simple_blocks: Vec<Rc<RefCell<SimpleBlock>>> = vec![];
let mut new_compound_blocks: Vec<Rc<CompoundBlock>> = vec![];
for (block, counter_image_group) in counterimage_grouped.iter_mut() {
let borrowed_coarse_block = Rc::clone(
&(*counter_image_group.block)
for (block, back_edges_group) in backedges_grouped.iter_mut() {
let borrowed_compound_block = Rc::clone(
&(*back_edges_group.block)
.borrow()
.coarse_block_that_supersets_self,
);
let proper_subblock = {
let fine_block = FineBlock {
values: counter_image_group.subblock.clone(),
coarse_block_that_supersets_self: Rc::clone(&borrowed_coarse_block),
let simple_block = SimpleBlock {
block: back_edges_group.subblock.clone(),
coarse_block_that_supersets_self:
Rc::clone(&borrowed_compound_block),
};
Rc::new(RefCell::new(fine_block))
Rc::new(RefCell::new(simple_block))
};
let prior_count = borrowed_coarse_block.fine_block_count();
borrowed_coarse_block.add_fine_block(Rc::clone(&proper_subblock));
let prior_count = borrowed_compound_block.simple_block_count();
borrowed_compound_block.add_simple_block(Rc::clone(&proper_subblock));
if prior_count == 1 {
new_compound_coarse_blocks.push(Rc::clone(&borrowed_coarse_block));
new_compound_blocks.push(Rc::clone(&borrowed_compound_block));
}
for node_index in counter_image_group.subblock.iter() {
node_to_block_vec.insert(*node_index, Rc::clone(&proper_subblock));
for node in back_edges_group.subblock.iter() {
node_to_block.insert(*node, Rc::clone(&proper_subblock));
}
// subtract subblock from block
(*counter_image_group.block).borrow_mut().values = block
(*back_edges_group.block).borrow_mut().block =
block
.iter()
.filter(|x| !(*proper_subblock).borrow().values.contains(x))
.filter(|x| !(*proper_subblock).borrow().block.contains(x))
.copied()
.collect();
if (*counter_image_group.block).borrow().values.is_empty() {
borrowed_coarse_block.remove_fine_block(&counter_image_group.block);
all_removed_fine_blocks.push(Rc::clone(&counter_image_group.block));
if (*back_edges_group.block).borrow().block.is_empty() {
borrowed_compound_block
.remove_simple_block(&back_edges_group.block);
all_removed_simple_blocks.push(Rc::clone(&back_edges_group.block));
}
all_new_fine_blocks.push(Rc::clone(&proper_subblock));
all_new_simple_blocks.push(Rc::clone(&proper_subblock));
}
(
(all_new_fine_blocks, all_removed_fine_blocks),
new_compound_coarse_blocks,
(all_new_simple_blocks, all_removed_simple_blocks),
new_compound_blocks,
)
}
fn maximum_bisimulation<const N: usize, G>(
graphs: &[&G; N]
) -> Option<Vec<Block>>
) -> (Option<Vec<Block>>, MyTranslator<G::NodeId, N>)
where
G: IntoNodeReferences + IntoEdges + IntoNeighborsDirected,
G::NodeId: std::cmp::Eq + std::hash::Hash,
G::EdgeId: std::cmp::Eq + std::hash::Hash,
G::EdgeRef: PartialEq,
G::NodeId: Debug
{
let (fine_block_tuple,
initial_coarse_partition,
mut node_to_block_vec,
let ((simple_block_0, simple_block_1),
initial_compound_partition,
mut node_to_block,
converter) = initialization(graphs);
let mut queue: CoarsePartition = initial_coarse_partition;
let mut all_fine_blocks = vec![fine_block_tuple.0, fine_block_tuple.1];
let mut queue: CompoundPartition = initial_compound_partition;
let mut all_simple_blocks = vec![simple_block_0, simple_block_1];
loop {
let (smaller_component, simple_splitter_block) = {
@ -607,41 +618,49 @@ where
Some(coarse_block) => coarse_block,
None => break,
};
let mut fine_blocks_in_splitter_block = splitter_block
.fine_blocks_that_are_subsets_of_self
let mut simple_blocks_in_splitter_block = splitter_block
.simple_blocks_subsets_of_self
.borrow()
.clone();
let smaller_component_index = fine_blocks_in_splitter_block
.iter()
.enumerate()
.min_by(|(_, x), (_, y)| {
(***x)
.borrow()
.values
.len()
.cmp(&(***y).borrow().values.len())
})
.map(|(index, _)| index)?;
let smaller_component_index = {
match simple_blocks_in_splitter_block
.iter()
.enumerate()
.min_by(|(_, x), (_, y)| {
(***x)
.borrow()
.block
.len()
.cmp(&(***y).borrow().block.len())
})
.map(|(index, _)| index) {
Some(v) => v,
None => {return (None, converter)}
}
};
let smaller_component = fine_blocks_in_splitter_block.remove(smaller_component_index);
let smaller_component =
simple_blocks_in_splitter_block.remove(smaller_component_index);
let simple_splitter_block_values: Block = splitter_block
.values
.block
.clone()
.iter()
.filter(|x| !(*smaller_component).borrow().values.contains(x))
.filter(|x| !(*smaller_component).borrow().block.contains(x))
.copied()
.collect();
let simple_splitter_block = CoarseBlock {
values: simple_splitter_block_values,
fine_blocks_that_are_subsets_of_self: RefCell::new(fine_blocks_in_splitter_block),
let simple_splitter_block = CompoundBlock {
block: simple_splitter_block_values,
simple_blocks_subsets_of_self:
RefCell::new(simple_blocks_in_splitter_block),
};
let simple_splitter_block_pointer = Rc::new(simple_splitter_block);
if simple_splitter_block_pointer
.fine_blocks_that_are_subsets_of_self
.simple_blocks_subsets_of_self
.borrow()
.len()
> 1
@ -652,7 +671,7 @@ where
(smaller_component, simple_splitter_block_pointer)
};
simple_splitter_block
.fine_blocks_that_are_subsets_of_self
.simple_blocks_subsets_of_self
.borrow()
.iter()
.for_each(|x| {
@ -660,42 +679,53 @@ where
Rc::clone(&simple_splitter_block);
});
let mut counterimage = build_counterimage(graphs, smaller_component, &converter);
let mut back_edges =
build_backedges(graphs, smaller_component, &converter);
let counterimage_group = group_by_counterimage(counterimage.clone(), &node_to_block_vec);
let ((new_fine_blocks, removeable_fine_blocks), coarse_block_that_are_now_compound) =
split_blocks_with_grouped_counterimage(counterimage_group, &mut node_to_block_vec);
let back_edges_group =
group_by_backedges(back_edges.clone(), &node_to_block);
let ((new_simple_blocks, removeable_simple_blocks),
compound_block_that_are_now_compound) =
split_blocks_with_grouped_backedges(back_edges_group,
&mut node_to_block);
all_fine_blocks.extend(new_fine_blocks);
all_fine_blocks.retain(|x| !removeable_fine_blocks.iter().any(|y| Rc::ptr_eq(x, y)));
queue.extend(coarse_block_that_are_now_compound);
all_simple_blocks.extend(new_simple_blocks);
all_simple_blocks.retain(
|x| !removeable_simple_blocks.iter().any(|y| Rc::ptr_eq(x, y)) );
queue.extend(compound_block_that_are_now_compound);
// counterimage = E^{-1}(B) - E^{-1}(S-B)
{
let counterimage_splitter_complement =
build_counterimage(graphs, (*simple_splitter_block).clone(), &converter);
build_backedges(graphs,
(*simple_splitter_block).clone(),
&converter);
counterimage_splitter_complement.keys().for_each(|node| {
counterimage.remove(node);
back_edges.remove(node);
});
}
let counterimage_group = group_by_counterimage(counterimage, &node_to_block_vec);
let ((new_fine_blocks, removeable_fine_blocks), coarse_block_that_are_now_compound) =
split_blocks_with_grouped_counterimage(counterimage_group, &mut node_to_block_vec);
let counterimage_group = group_by_backedges(back_edges, &node_to_block);
let ((new_fine_blocks, removeable_fine_blocks),
coarse_block_that_are_now_compound) =
split_blocks_with_grouped_backedges(counterimage_group,
&mut node_to_block);
all_fine_blocks.extend(new_fine_blocks);
all_fine_blocks.retain(|x| !removeable_fine_blocks.iter().any(|y| Rc::ptr_eq(x, y)));
all_simple_blocks.extend(new_fine_blocks);
all_simple_blocks.retain(
|x| !removeable_fine_blocks.iter().any(|y| Rc::ptr_eq(x, y)) );
queue.extend(coarse_block_that_are_now_compound);
}
Some(
all_fine_blocks
(Some(
all_simple_blocks
.iter()
.map(|x| (**x).borrow().values.clone())
.filter(|x| !x.is_empty()) // remove leaf block when there are no leaves
.map(|x| (**x).borrow().block.clone())
// remove leaf block when there are no leaves
.filter(|x| !x.is_empty())
.collect(),
)
), converter)
}
@ -708,6 +738,7 @@ where
G::NodeId: std::cmp::Eq + std::hash::Hash,
G::EdgeId: std::cmp::Eq + std::hash::Hash,
G::EdgeRef: PartialEq,
G::NodeId: Debug,
{
if graph_a.node_count() == 0 && graph_b.node_count() == 0 {
return true
@ -716,25 +747,25 @@ where
return false
}
let result =
let (result, _converter) =
match maximum_bisimulation(&[graph_a, graph_b]) {
None => {return false},
Some(val) => {
val.into_iter()
(None, _) => {return false},
(Some(val), converter) => {
(val.into_iter()
.find(
|el| {
let mut keep_track = [false, false];
for e in el {
keep_track[e.graph() as usize] = true;
let (_node_id, graph_id) =
converter.decode(e).unwrap();
keep_track[*graph_id as usize] = true;
}
!keep_track[0] || !keep_track[1]
}
)
), converter)
}
};
println!("{:?}", result);
result.is_none()
}