Bisimilarity by Paige and Tarjan

This commit is contained in:
elvis
2025-07-24 18:18:27 +02:00
parent a661154919
commit 4c9ee896e1
2 changed files with 693 additions and 146 deletions

View File

@ -1,10 +1,10 @@
use std::collections::{BTreeSet, HashMap};
use std::cell::RefCell;
use std::collections::hash_map::Entry;
use std::collections::{BTreeSet, HashMap, HashSet};
use std::rc::Rc;
use petgraph::visit::{ EdgeRef,
GraphBase,
IntoEdgeReferences,
IntoEdges,
IntoNodeReferences };
use petgraph::visit::{ EdgeRef, GraphBase, IntoEdgeReferences, IntoEdges, IntoNeighborsDirected, IntoNodeReferences, NodeCount };
use petgraph::Direction::{Incoming, Outgoing};
// -----------------------------------------------------------------------------
// Helper Functions
@ -13,20 +13,20 @@ use petgraph::visit::{ EdgeRef,
#[inline(always)]
fn equal_vectors<T>(a: &Vec<T>, b: &Vec<T>) -> bool
where
T: PartialEq
T: PartialEq
{
for el in a {
if !b.contains(el) {
return false;
for el in a {
if !b.contains(el) {
return false;
}
}
}
for el in b {
if !a.contains(el) {
return false;
for el in b {
if !a.contains(el) {
return false;
}
}
}
true
true
}
@ -34,161 +34,707 @@ where
// Bisimilarity
// -----------------------------------------------------------------------------
// -----------------------------------------------------------------------------
// Bisimilarity by Kanellakis and Smolka from The algorithmics of bisimilarity
// by Luca Aceto, Anna Ingolfsdottir and Jirí Srba; pages 105 to 110
// https://doi.org/10.1017/CBO9780511792588.004
// -----------------------------------------------------------------------------
struct GraphPartition<'a, G>
where
G: GraphBase,
G::NodeId: std::cmp::Eq + std::hash::Hash,
G: GraphBase,
G::NodeId: std::cmp::Eq + std::hash::Hash,
{
pub node_to_block: HashMap<(usize, G::NodeId), u32>,
pub block_to_node: HashMap<u32, Vec<(usize, G::NodeId)>>,
pub graphs: [&'a G; 2],
last_block: u32,
blocks: BTreeSet<u32>
pub node_to_block: HashMap<(usize, G::NodeId), u32>,
pub block_to_node: HashMap<u32, Vec<(usize, G::NodeId)>>,
pub graphs: [&'a G; 2],
last_block: u32,
blocks: BTreeSet<u32>
}
impl<'a, G> GraphPartition<'a, G>
where
G: GraphBase,
G::NodeId: std::cmp::Eq + std::hash::Hash
G: GraphBase,
G::NodeId: std::cmp::Eq + std::hash::Hash
{
pub fn new(graph_a: &'a G, graph_b: &'a G) -> Self {
GraphPartition { node_to_block: HashMap::new(),
block_to_node: HashMap::new(),
graphs: [graph_a, graph_b],
last_block: 0,
blocks: BTreeSet::new() }
}
#[inline(always)]
pub fn add_node_last_partition(&mut self, node: G::NodeId, graph: usize) {
self.node_to_block.insert((graph, node), self.last_block);
self.block_to_node
.entry(self.last_block)
.or_default()
.push((graph, node));
self.blocks.insert(self.last_block);
}
#[inline(always)]
pub fn iterate_blocks(&self) -> Vec<u32> {
self.blocks.iter().cloned().collect::<Vec<_>>()
}
pub fn bisimilar(&self) -> bool {
// if there is a block that has only elements from one graph then they are
// not bisimilar
for (_block, node_list) in self.block_to_node.iter() {
let graph_id = node_list.first().unwrap().0;
if node_list.iter().all(|el| el.0 == graph_id) {
return false;
}
pub fn new(graph_a: &'a G, graph_b: &'a G) -> Self {
GraphPartition { node_to_block: HashMap::new(),
block_to_node: HashMap::new(),
graphs: [graph_a, graph_b],
last_block: 0,
blocks: BTreeSet::new() }
}
#[inline(always)]
pub fn add_node_last_partition(&mut self, node: G::NodeId, graph: usize) {
self.node_to_block.insert((graph, node), self.last_block);
self.block_to_node
.entry(self.last_block)
.or_default()
.push((graph, node));
self.blocks.insert(self.last_block);
}
#[inline(always)]
pub fn iterate_blocks(&self) -> Vec<u32> {
self.blocks.iter().cloned().collect::<Vec<_>>()
}
pub fn bisimilar(&self) -> bool {
// if there is a block that has only elements from one graph then they
// are not bisimilar
for (_block, node_list) in self.block_to_node.iter() {
let graph_id = node_list.first().unwrap().0;
if node_list.iter().all(|el| el.0 == graph_id) {
return false;
}
}
true
}
true
}
}
impl<'a, G> GraphPartition<'a, G>
where
G: IntoEdges,
G::NodeId: std::cmp::Eq + std::hash::Hash,
G: IntoEdges,
G::NodeId: std::cmp::Eq + std::hash::Hash,
{
fn reachable_blocks(
&self,
label: &G::EdgeRef,
s: &(usize, G::NodeId)
) -> Vec<u32>
where <G as IntoEdgeReferences>::EdgeRef: PartialEq
{
let mut val = vec![];
for el in self.graphs[s.0].edges(s.1).filter(|x| x == label) {
let tmp = (s.0, el.target());
val.push(*self.node_to_block.get(&tmp).unwrap());
}
val
}
pub fn split(&mut self, block: u32, label: &G::EdgeRef) -> bool
where <G as IntoEdgeReferences>::EdgeRef: PartialEq
{
let Some(nodes) = self.block_to_node.get(&block)
else {
return true
};
let mut nodes = nodes.iter();
let s = nodes.next().unwrap();
let mut b1 = vec![s];
let mut b2 = vec![];
let reachable_blocks_s = self.reachable_blocks(label, s);
for t in nodes {
let reachable_blocks_t = self.reachable_blocks(label, t);
if equal_vectors(&reachable_blocks_s, &reachable_blocks_t) {
b1.push(t);
} else {
b2.push(*t);
}
fn reachable_blocks(
&self,
label: &G::EdgeRef,
s: &(usize, G::NodeId)
) -> Vec<u32>
where <G as IntoEdgeReferences>::EdgeRef: PartialEq
{
let mut val = vec![];
for el in self.graphs[s.0].edges(s.1).filter(|x| x == label) {
let tmp = (s.0, el.target());
val.push(*self.node_to_block.get(&tmp).unwrap());
}
val
}
if b2.is_empty() {
// all elements go to the same block with label label, so no change
false
} else {
// some elements need to be split into a different block
self.last_block += 1;
let new_block = self.last_block;
self.blocks.insert(new_block);
pub fn split(&mut self, block: u32, label: &G::EdgeRef) -> bool
where <G as IntoEdgeReferences>::EdgeRef: PartialEq
{
let Some(nodes) = self.block_to_node.get(&block)
else {
return true
};
let mut nodes = nodes.iter();
let s = nodes.next().unwrap();
for b in b2 {
self.node_to_block.entry(b).and_modify(|e| *e = new_block);
self.block_to_node.entry(new_block).or_default().push(b);
self.block_to_node.entry(block).and_modify(|e| {
let index = e.iter().position(|x| *x == b).unwrap();
e.remove(index);
});
}
true
let mut b1 = vec![s];
let mut b2 = vec![];
let reachable_blocks_s = self.reachable_blocks(label, s);
for t in nodes {
let reachable_blocks_t = self.reachable_blocks(label, t);
if equal_vectors(&reachable_blocks_s, &reachable_blocks_t) {
b1.push(t);
} else {
b2.push(*t);
}
}
if b2.is_empty() {
// all elements go to the same block with label label, so no change
false
} else {
// some elements need to be split into a different block
self.last_block += 1;
let new_block = self.last_block;
self.blocks.insert(new_block);
for b in b2 {
self.node_to_block.entry(b).and_modify(|e| *e = new_block);
self.block_to_node.entry(new_block).or_default().push(b);
self.block_to_node.entry(block).and_modify(|e| {
let index = e.iter().position(|x| *x == b).unwrap();
e.remove(index);
});
}
true
}
}
}
}
pub fn bisimilarity_kanellakis_smolka<'a, G>(
graph_a: &'a G,
graph_b: &'a G
graph_a: &'a G,
graph_b: &'a G
) -> bool
where
G: IntoNodeReferences + IntoEdges,
G::NodeId: std::cmp::Eq + std::hash::Hash,
G::EdgeRef: PartialEq
G: IntoNodeReferences + IntoEdges,
G::NodeId: std::cmp::Eq + std::hash::Hash,
G::EdgeRef: PartialEq
{
let graphs = [graph_a, graph_b];
let graphs = [graph_a, graph_b];
let mut partition: GraphPartition<G> = GraphPartition::new(graph_a, graph_b);
for (p, graph) in graphs.iter().enumerate() {
for node in graph.node_identifiers() {
partition.add_node_last_partition(node, p);
}
}
let labels =
graph_a.edge_references()
.chain(graph_b.edge_references())
.collect::<Vec<_>>();
let mut changed = true;
while changed {
changed = false;
for block in partition.iterate_blocks() {
for label in labels.iter() {
if partition.split(block, label) {
changed = true;
let mut partition: GraphPartition<G> =
GraphPartition::new(graph_a, graph_b);
for (p, graph) in graphs.iter().enumerate() {
for node in graph.node_identifiers() {
partition.add_node_last_partition(node, p);
}
}
}
}
partition.bisimilar()
let labels =
graph_a.edge_references()
.chain(graph_b.edge_references())
.collect::<Vec<_>>();
let mut changed = true;
while changed {
changed = false;
for block in partition.iterate_blocks() {
for label in labels.iter() {
if partition.split(block, label) {
changed = true;
}
}
}
}
partition.bisimilar()
}
// -----------------------------------------------------------------------------
// Bisimilarity by Paige and Tarjan from Three Partition Refinement Algorithms
// by Robert Paige L., Robert Endre Tarjan; pages 977 to 983
// https://doi.org/10.1137/0216062
// -----------------------------------------------------------------------------
type NodeIdType = u32;
type GraphIdType = u32;
type NodeType = (GraphIdType, NodeIdType);
trait NodeTrait {
fn graph(&self) -> GraphIdType;
}
impl NodeTrait for NodeType {
fn graph(&self) -> GraphIdType {
self.0
}
}
trait NextId<T> {
fn next_id_of_graph(&mut self, graph_id: GraphIdType) -> T;
}
struct Translator<From, To, State>
where
State: NextId<To>
{
data: HashMap<From, To>,
reverse_data: HashMap<To, From>,
last_id: State,
}
impl<From, To, State> Translator<From, To, State>
where
To: std::hash::Hash + std::cmp::Eq + Copy,
From: std::hash::Hash + std::cmp::Eq + Clone,
State: NextId<To>
{
pub fn new() -> Self
where
State: Default
{
Translator { data: HashMap::new(),
reverse_data: HashMap::new(),
last_id: State::default() }
}
pub fn encode(&mut self, val: From, graph_id: GraphIdType) -> To
{
let id = *(self.data.entry(val.clone())
.or_insert(
self.last_id.next_id_of_graph(graph_id)
));
self.reverse_data.insert(id, val);
id
}
pub fn get(&self, val: &From) -> Option<&To>
{
self.data.get(val)
}
pub fn decode(&self, val: &To) -> Option<&From> {
self.reverse_data.get(val)
}
}
#[derive(Clone, Copy, Hash, PartialEq, Eq, PartialOrd, Ord)]
struct NodeState<const N: usize> {
last_ids: [u32; N],
}
impl<const N: usize> NodeState<N> {
fn new() -> Self {
NodeState { last_ids: [0; N] }
}
}
impl<const N: usize> Default for NodeState<N> {
fn default() -> Self {
Self::new()
}
}
impl<const N: usize> NextId<NodeType> for NodeState<N> {
fn next_id_of_graph(&mut self, graph_id: u32) -> NodeType {
let graph_id_usize = graph_id as usize;
if graph_id_usize > self.last_ids.len() {
panic!()
}
self.last_ids[graph_id_usize] += 1;
(graph_id, self.last_ids[graph_id_usize])
}
}
type Block = Vec<NodeType>;
type CounterImage = HashMap<NodeType, Vec<NodeType>>;
type NodeToBlockVec = HashMap<NodeType, Rc<RefCell<FineBlock>>>;
type CoarsePartition = Vec<Rc<CoarseBlock>>;
type FineBlockPointer = Rc<RefCell<FineBlock>>;
type CoarseBlockPointer = Rc<CoarseBlock>;
type CounterimageGrouped = HashMap<Block, CounterImageGroup>;
struct FineBlock {
values: Block,
coarse_block_that_supersets_self: Rc<CoarseBlock>
}
#[derive(Clone)]
struct CoarseBlock {
values: Block,
fine_blocks_that_are_subsets_of_self: RefCell<Vec<Rc<RefCell<FineBlock>>>>,
}
impl CoarseBlock {
fn add_fine_block(&self, fine_block: Rc<RefCell<FineBlock>>) {
self.fine_blocks_that_are_subsets_of_self
.borrow_mut()
.push(fine_block);
}
fn remove_fine_block(&self, fine_block: &Rc<RefCell<FineBlock>>) {
self.fine_blocks_that_are_subsets_of_self
.borrow_mut()
.retain(|x| !Rc::ptr_eq(x, fine_block));
}
fn fine_block_count(&self) -> usize {
self.fine_blocks_that_are_subsets_of_self.borrow().len()
}
}
struct CounterImageGroup {
block: Rc<RefCell<FineBlock>>,
subblock: Block,
}
trait HasValues {
fn values(&self) -> Block;
}
impl HasValues for FineBlockPointer {
fn values(&self) -> Block {
(**self).borrow().values.clone()
}
}
impl HasValues for CoarseBlock {
fn values(&self) -> Block {
self.values.clone()
}
}
fn initialization<const N: usize, G>(
graphs: &[&G; N]
) -> ( (FineBlockPointer, FineBlockPointer),
CoarsePartition,
NodeToBlockVec,
Translator<G::NodeId, NodeType, NodeState<N>> )
where
G: IntoNodeReferences + IntoEdges + IntoNeighborsDirected,
G::NodeId: std::cmp::Eq + std::hash::Hash,
G::EdgeId: std::cmp::Eq + std::hash::Hash,
G::EdgeRef: PartialEq,
{
// we translate into unique ids
let mut convert_nodes: Translator<G::NodeId, NodeType, NodeState<N>>
= Translator::new();
let graph_node_indices = {
let mut tmp: Block = vec![];
for (pos, graph) in graphs.iter().enumerate() {
tmp.extend(
graph.node_identifiers()
.map(|val| convert_nodes.encode(val, pos as u32))
.collect::<Vec<_>>()
);
}
tmp
};
let coarse_initial_block_pointer: Rc<CoarseBlock> = {
let coarse_initial_block = CoarseBlock {
values: graph_node_indices.clone(),
fine_blocks_that_are_subsets_of_self: RefCell::new(vec![]),
};
Rc::new(coarse_initial_block)
};
// minor optimization: split nodes between those that have outgoing edges
// and those that dont
let (leaf_node_block_pointer, non_leaf_node_block_pointer) = {
let (leaf_node_indices, non_leaf_node_indices): (Block, Block) =
graph_node_indices
.clone()
.into_iter()
.partition(
|x| {
graphs[x.graph() as usize]
.neighbors_directed(
*convert_nodes.decode(x).unwrap(),
Outgoing)
.count() == 0
}
);
let leaf_node_block = FineBlock {
values: leaf_node_indices,
coarse_block_that_supersets_self: Rc::clone(&coarse_initial_block_pointer),
};
let non_leaf_node_block = FineBlock {
values: non_leaf_node_indices,
coarse_block_that_supersets_self: Rc::clone(&coarse_initial_block_pointer),
};
(
Rc::new(RefCell::new(leaf_node_block)),
Rc::new(RefCell::new(non_leaf_node_block)),
)
};
coarse_initial_block_pointer
.fine_blocks_that_are_subsets_of_self
.borrow_mut()
.extend([
Rc::clone(&leaf_node_block_pointer),
Rc::clone(&non_leaf_node_block_pointer),
]);
let node_to_block_vec = {
let mut tmp = HashMap::new();
(*non_leaf_node_block_pointer)
.borrow()
.values
.iter()
.copied()
.for_each(
|value|
{ tmp.insert(value, Rc::clone(&non_leaf_node_block_pointer)); }
);
(*leaf_node_block_pointer)
.borrow()
.values
.iter()
.copied()
.for_each(
|value|
{ tmp.insert(value, Rc::clone(&leaf_node_block_pointer)); }
);
tmp
};
(
(leaf_node_block_pointer, non_leaf_node_block_pointer),
vec![coarse_initial_block_pointer],
node_to_block_vec,
convert_nodes
)
}
fn build_counterimage<IndexHolder: HasValues, const N:usize, G>(
graphs: &[&G; N],
fine_block: IndexHolder,
convert_nodes: &Translator<G::NodeId, NodeType, NodeState<N>>
) -> CounterImage
where
G: IntoNodeReferences + IntoEdges + IntoNeighborsDirected,
G::NodeId: std::cmp::Eq + std::hash::Hash,
G::EdgeId: std::cmp::Eq + std::hash::Hash,
G::EdgeRef: PartialEq,
{
let mut counterimage = HashMap::new();
fine_block.values().iter().for_each(|node_index_pointer| {
counterimage.insert(
*node_index_pointer,
graphs[node_index_pointer.graph() as usize]
.neighbors_directed(
*convert_nodes.decode(node_index_pointer).unwrap(),
Incoming)
.collect::<HashSet<_>>()
.into_iter()
.map(|e| convert_nodes.get(&e).unwrap())
.copied()
.collect::<Vec<_>>(),
);
});
counterimage
}
fn group_by_counterimage(
counterimage: CounterImage,
node_to_block: &NodeToBlockVec,
) -> CounterimageGrouped {
let mut counterimage_grouped: CounterimageGrouped = HashMap::new();
for incoming_neighbor_group in counterimage.values() {
for node in incoming_neighbor_group {
let block = Rc::clone(node_to_block.get(node).unwrap());
let key = (*block).borrow().values.clone();
match counterimage_grouped.entry(key) {
Entry::Occupied(mut entry) => entry.get_mut().subblock.push(*node),
Entry::Vacant(entry) => {
entry.insert(CounterImageGroup {
block: Rc::clone(&block),
subblock: Vec::from([*node]),
});
}
}
}
}
counterimage_grouped
}
fn split_blocks_with_grouped_counterimage(
mut counterimage_grouped: CounterimageGrouped,
node_to_block_vec: &mut NodeToBlockVec,
) -> (
(Vec<FineBlockPointer>, Vec<FineBlockPointer>),
Vec<CoarseBlockPointer>,
) {
let mut all_new_fine_blocks: Vec<Rc<RefCell<FineBlock>>> = vec![];
let mut all_removed_fine_blocks: Vec<Rc<RefCell<FineBlock>>> = vec![];
let mut new_compound_coarse_blocks: Vec<Rc<CoarseBlock>> = vec![];
for (block, counter_image_group) in counterimage_grouped.iter_mut() {
let borrowed_coarse_block = Rc::clone(
&(*counter_image_group.block)
.borrow()
.coarse_block_that_supersets_self,
);
let proper_subblock = {
let fine_block = FineBlock {
values: counter_image_group.subblock.clone(),
coarse_block_that_supersets_self: Rc::clone(&borrowed_coarse_block),
};
Rc::new(RefCell::new(fine_block))
};
let prior_count = borrowed_coarse_block.fine_block_count();
borrowed_coarse_block.add_fine_block(Rc::clone(&proper_subblock));
if prior_count == 1 {
new_compound_coarse_blocks.push(Rc::clone(&borrowed_coarse_block));
}
for node_index in counter_image_group.subblock.iter() {
node_to_block_vec.insert(*node_index, Rc::clone(&proper_subblock));
}
// subtract subblock from block
(*counter_image_group.block).borrow_mut().values = block
.iter()
.filter(|x| !(*proper_subblock).borrow().values.contains(x))
.copied()
.collect();
if (*counter_image_group.block).borrow().values.is_empty() {
borrowed_coarse_block.remove_fine_block(&counter_image_group.block);
all_removed_fine_blocks.push(Rc::clone(&counter_image_group.block));
}
all_new_fine_blocks.push(Rc::clone(&proper_subblock));
}
(
(all_new_fine_blocks, all_removed_fine_blocks),
new_compound_coarse_blocks,
)
}
fn maximum_bisimulation<const N: usize, G>(
graphs: &[&G; N]
) -> Option<Vec<Block>>
where
G: IntoNodeReferences + IntoEdges + IntoNeighborsDirected,
G::NodeId: std::cmp::Eq + std::hash::Hash,
G::EdgeId: std::cmp::Eq + std::hash::Hash,
G::EdgeRef: PartialEq,
{
let (fine_block_tuple,
initial_coarse_partition,
mut node_to_block_vec,
converter) = initialization(graphs);
let mut queue: CoarsePartition = initial_coarse_partition;
let mut all_fine_blocks = vec![fine_block_tuple.0, fine_block_tuple.1];
loop {
let (smaller_component, simple_splitter_block) = {
let splitter_block = match queue.pop() {
Some(coarse_block) => coarse_block,
None => break,
};
let mut fine_blocks_in_splitter_block = splitter_block
.fine_blocks_that_are_subsets_of_self
.borrow()
.clone();
let smaller_component_index = fine_blocks_in_splitter_block
.iter()
.enumerate()
.min_by(|(_, x), (_, y)| {
(***x)
.borrow()
.values
.len()
.cmp(&(***y).borrow().values.len())
})
.map(|(index, _)| index)?;
let smaller_component = fine_blocks_in_splitter_block.remove(smaller_component_index);
let simple_splitter_block_values: Block = splitter_block
.values
.clone()
.iter()
.filter(|x| !(*smaller_component).borrow().values.contains(x))
.copied()
.collect();
let simple_splitter_block = CoarseBlock {
values: simple_splitter_block_values,
fine_blocks_that_are_subsets_of_self: RefCell::new(fine_blocks_in_splitter_block),
};
let simple_splitter_block_pointer = Rc::new(simple_splitter_block);
if simple_splitter_block_pointer
.fine_blocks_that_are_subsets_of_self
.borrow()
.len()
> 1
{
queue.push(Rc::clone(&simple_splitter_block_pointer));
}
(smaller_component, simple_splitter_block_pointer)
};
simple_splitter_block
.fine_blocks_that_are_subsets_of_self
.borrow()
.iter()
.for_each(|x| {
(*x).borrow_mut().coarse_block_that_supersets_self =
Rc::clone(&simple_splitter_block);
});
let mut counterimage = build_counterimage(graphs, smaller_component, &converter);
let counterimage_group = group_by_counterimage(counterimage.clone(), &node_to_block_vec);
let ((new_fine_blocks, removeable_fine_blocks), coarse_block_that_are_now_compound) =
split_blocks_with_grouped_counterimage(counterimage_group, &mut node_to_block_vec);
all_fine_blocks.extend(new_fine_blocks);
all_fine_blocks.retain(|x| !removeable_fine_blocks.iter().any(|y| Rc::ptr_eq(x, y)));
queue.extend(coarse_block_that_are_now_compound);
// counterimage = E^{-1}(B) - E^{-1}(S-B)
{
let counterimage_splitter_complement =
build_counterimage(graphs, (*simple_splitter_block).clone(), &converter);
counterimage_splitter_complement.keys().for_each(|node| {
counterimage.remove(node);
});
}
let counterimage_group = group_by_counterimage(counterimage, &node_to_block_vec);
let ((new_fine_blocks, removeable_fine_blocks), coarse_block_that_are_now_compound) =
split_blocks_with_grouped_counterimage(counterimage_group, &mut node_to_block_vec);
all_fine_blocks.extend(new_fine_blocks);
all_fine_blocks.retain(|x| !removeable_fine_blocks.iter().any(|y| Rc::ptr_eq(x, y)));
queue.extend(coarse_block_that_are_now_compound);
}
Some(
all_fine_blocks
.iter()
.map(|x| (**x).borrow().values.clone())
.filter(|x| !x.is_empty()) // remove leaf block when there are no leaves
.collect(),
)
}
pub fn bisimilarity_paige_tarjan<G>(
graph_a: &G,
graph_b: &G
) -> bool
where
G: IntoNodeReferences + IntoEdges + IntoNeighborsDirected + NodeCount,
G::NodeId: std::cmp::Eq + std::hash::Hash,
G::EdgeId: std::cmp::Eq + std::hash::Hash,
G::EdgeRef: PartialEq,
{
if graph_a.node_count() == 0 && graph_b.node_count() == 0 {
return true
}
if graph_a.node_count() == 0 || graph_b.node_count() == 0 {
return false
}
let result =
match maximum_bisimulation(&[graph_a, graph_b]) {
None => {return false},
Some(val) => {
val.into_iter()
.find(
|el| {
let mut keep_track = [false, false];
for e in el {
keep_track[e.graph() as usize] = true;
}
!keep_track[0] || !keep_track[1]
}
)
}
};
println!("{:?}", result);
result.is_none()
}