Refactoring :), in the middle of so please be patient

This commit is contained in:
elvis
2025-08-23 23:40:19 +02:00
parent f8740b8bd7
commit 8a492c7b8a
29 changed files with 2630 additions and 2489 deletions

View File

@ -0,0 +1,484 @@
use serde::{Deserialize, Serialize};
use std::cmp;
use std::collections::{HashMap, HashSet};
use std::rc::Rc;
use super::choices::Choices;
use super::process::Process;
use super::reaction::Reaction;
use super::set::Set;
use super::translator::IdType;
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct Environment {
definitions: HashMap<IdType, Process>,
}
impl Environment {
pub fn new() -> Environment {
Environment {
definitions: HashMap::new(),
}
}
pub fn get(&self, k: IdType) -> Option<&Process> {
self.definitions.get(&k)
}
pub fn iter(&self) -> std::collections::hash_map::Iter<'_, u32, Process> {
self.definitions.iter()
}
pub fn all_elements(&self) -> Set {
let mut acc = Set::new();
for (_, process) in self.definitions.iter() {
acc.push(&process.all_elements());
}
acc
}
/// unfold returns the list of choices for the context given the process
/// definitions environment. choices::Choices is a list of context moves
/// mapping a set of entities and the continuation.
/// see unfold
pub fn unfold(
&self,
context_process: &Process,
current_entities: &Set,
) -> Result<Choices, String> {
match context_process {
Process::Nill => {
Ok(Choices::new())
},
Process::RecursiveIdentifier { identifier } => {
let newprocess = self.get(*identifier);
if let Some(newprocess) = newprocess {
self.unfold(newprocess, current_entities)
} else {
Err(format!("Missing symbol in context: {identifier}"))
}
}
Process::EntitySet { entities, next_process, } => {
Ok(Choices::from([(
Rc::new(entities.clone()),
Rc::clone(next_process),
)]))
},
Process::Guarded { reaction, next_process } => {
if reaction.enabled(current_entities) {
Ok(Choices::from([(Rc::new(reaction.products.clone()),
Rc::clone(next_process))]))
} else {
Ok(Choices::new())
}
}
Process::WaitEntity { repeat, repeated_process: _, next_process, }
if *repeat <= 0 => {
self.unfold(next_process, current_entities)
},
Process::WaitEntity { repeat, repeated_process, next_process, }
if *repeat == 1 => {
let mut choices1 = self.unfold(repeated_process,
current_entities)?;
choices1.replace(Rc::clone(next_process));
Ok(choices1)
}
Process::WaitEntity { repeat, repeated_process, next_process, } =>
{
let mut choices1 = self.unfold(repeated_process,
current_entities)?;
choices1.replace(Rc::new(Process::WaitEntity {
repeat: (*repeat - 1),
repeated_process: Rc::clone(repeated_process),
next_process: Rc::clone(next_process),
}));
Ok(choices1)
}
Process::Summation { children } => {
// short-circuits with try_fold.
children.iter().try_fold(Choices::new(), |mut acc, x| {
match self.unfold(x, current_entities) {
Ok(mut choices) => {
acc.append(&mut choices);
Ok(acc)
}
Err(e) => Err(e),
}
})
}
Process::NondeterministicChoice { children } => {
// short-circuits with try_fold.
if children.is_empty() {
Ok(Choices::from(vec![(
Rc::new(Set::new()),
Rc::new(Process::Nill),
)]))
} else {
children.iter().try_fold(Choices::new(), |mut acc, x| {
acc.shuffle(self.unfold(x, current_entities)?);
Ok(acc)
})
}
}
}
}
}
impl Default for Environment {
fn default() -> Self {
Environment::new()
}
}
impl<const N: usize> From<[(IdType, Process); N]> for Environment {
fn from(arr: [(IdType, Process); N]) -> Self {
Environment {
definitions: HashMap::from(arr),
}
}
}
impl From<&[(IdType, Process)]> for Environment {
fn from(arr: &[(IdType, Process)]) -> Self {
Environment {
definitions: HashMap::from_iter(arr.to_vec()),
}
}
}
impl From<Vec<(IdType, Process)>> for Environment {
fn from(arr: Vec<(IdType, Process)>) -> Self {
Environment {
definitions: HashMap::from_iter(arr),
}
}
}
// -----------------------------------------------------------------------------
// Loops
// -----------------------------------------------------------------------------
impl Environment {
/// A special case of systems is when the context recursively provides
/// always the same set of entities. The corresponding computation is
/// infinite. It consists of a finite sequence of states followed by a
/// looping sequence. IMPORTANT: We return all loops for all X = Q.X, by
/// varing X. The set of reactions Rs and the context x are constant. Each
/// state of the computation is distinguished by the current entities E.
/// Under these assumptions, the predicate lollipop finds the Prefixes and
/// the Loops sequences of entities.
/// see lollipop
pub fn lollipops_decomposed(
&self,
reaction_rules: &[Reaction],
available_entities: &Set,
) -> Vec<(Vec<Set>, Vec<Set>)> {
// FIXME: i think we are only interested in "x", not all symbols that
// satisfy X = pre(Q, rec(X))
let filtered = self.iter().filter_map(|l| l.1.filter_delta(l.0));
let find_loop_fn =
|q| Reaction::find_loop(reaction_rules,
available_entities.clone(),
q);
filtered.map(find_loop_fn).collect::<Vec<_>>()
}
pub fn lollipops_prefix_len_loop_decomposed(
&self,
reaction_rules: &[Reaction],
available_entities: &Set,
) -> Vec<(usize, Vec<Set>)> {
let filtered = self.iter().filter_map(|l| l.1.filter_delta(l.0));
let find_loop_fn =
|q| Reaction::find_prefix_len_loop(reaction_rules,
available_entities.clone(),
q);
filtered.map(find_loop_fn).collect::<Vec<_>>()
}
/// see loop
pub fn lollipops_only_loop_decomposed(
&self,
reaction_rules: &[Reaction],
available_entities: &Set,
) -> Vec<Vec<Set>> {
let filtered = self.iter().filter_map(|l| l.1.filter_delta(l.0));
let find_loop_fn =
|q| Reaction::find_only_loop(reaction_rules,
available_entities.clone(),
q);
filtered.map(find_loop_fn).collect::<Vec<_>>()
}
/// A special case of systems is when the context recursively provides
/// always the same set of entities. The corresponding computation is
/// infinite. It consists of a finite sequence of states followed by a
/// looping sequence. IMPORTANT: We return all loops for all X = Q.X, by
/// varing X. The set of reactions Rs and the context x are constant. Each
/// state of the computation is distinguished by the current entities E.
/// Under these assumptions, the predicate lollipop finds the Prefixes and
/// the Loops sequences of entities.
/// see lollipop
pub fn lollipops_decomposed_named(
&self,
reaction_rules: &[Reaction],
available_entities: &Set,
symb: IdType,
) -> Option<(Vec<Set>, Vec<Set>)> {
let filtered = self
.iter()
.filter_map(
|l|
if *l.0 == symb {
l.1.filter_delta(&symb)
} else {
None
}
)
.next();
let find_loop_fn = |q| Reaction::find_loop(reaction_rules,
available_entities.clone(),
q);
filtered.map(find_loop_fn)
}
pub fn lollipops_prefix_len_loop_decomposed_named(
&self,
reaction_rules: &[Reaction],
available_entities: &Set,
symb: IdType,
) -> Option<(usize, Vec<Set>)> {
let filtered = self
.iter()
.filter_map(
|l|
if *l.0 == symb {
l.1.filter_delta(&symb)
} else {
None
}
)
.next();
let find_loop_fn = |q|
Reaction::find_prefix_len_loop(reaction_rules,
available_entities.clone(),
q);
filtered.map(find_loop_fn)
}
/// see loop
pub fn lollipops_only_loop_decomposed_named(
&self,
reaction_rules: &[Reaction],
available_entities: &Set,
symb: IdType,
) -> Option<Vec<Set>> {
let filtered = self
.iter()
.filter_map(
|l|
if *l.0 == symb {
l.1.filter_delta(&symb)
} else {
None
}
)
.next();
let find_loop_fn =
|q| Reaction::find_only_loop(reaction_rules,
available_entities.clone(),
q);
filtered.map(find_loop_fn)
}
}
// -----------------------------------------------------------------------------
// Confluence
// -----------------------------------------------------------------------------
impl Environment {
/// Two set of entities E1 and E2 are confluent w.r.t. the perpetual context
/// delta iff they reach the same loop.
/// confluent checks if all the sets of entities in ```entities``` are confluent
/// and if so returns the maximal length of prefixes traversed to reached the
/// loop, its dimension (length) and the loop.
/// see confluent, confluents
pub fn confluent(
&self,
reaction_rules: &[Reaction],
entities: &[Set],
) -> Option<(usize, usize, Vec<Set>)> {
let all_loops =
self.lollipops_prefix_len_loop_decomposed(reaction_rules,
entities.first()?);
let (prefix_len, hoop) = all_loops.first()?.clone();
let dimension = hoop.len();
let mut max_distance = prefix_len;
for available_entities in entities.iter().skip(1) {
let all_loops =
self.lollipops_prefix_len_loop_decomposed(reaction_rules,
available_entities);
let (prefix_len, new_hoop) = all_loops.first()?;
if new_hoop.len() != dimension || !hoop.contains(new_hoop.first()?) {
return None;
}
max_distance = cmp::max(max_distance, *prefix_len);
}
Some((max_distance, dimension, hoop))
}
/// Two set of entities E1 and E2 are confluent w.r.t. the perpetual context Q
/// iff they reach the same loop.
/// The predicate confluent(Rs,Q,Es,Loop,Distance,Dimension) checks if all the
/// sets of entities in Es are confluent and if so returns the Loop, the maximal
/// length of prefixes traversed to reached the loop and its dimension (length).
/// see confluent, confluents
pub fn confluent_named(
&self,
reaction_rules: &[Reaction],
entities: &[Set],
symb: IdType,
) -> Option<(usize, usize, Vec<Set>)> {
let (prefix_len, first_hoop) =
self.lollipops_prefix_len_loop_decomposed_named(reaction_rules,
entities.first()?,
symb)?;
let dimension = first_hoop.len();
let mut max_distance = prefix_len;
let hoop = first_hoop;
for available_entities in entities.iter().skip(1) {
let (prefix_len, new_hoop) =
self.lollipops_prefix_len_loop_decomposed_named(
reaction_rules,
available_entities,
symb,
)?;
if new_hoop.len() != dimension || !hoop.contains(new_hoop.first()?) {
return None;
}
max_distance = cmp::max(max_distance, prefix_len);
}
Some((max_distance, dimension, hoop))
}
/// invariant_named checks if all the sets of entities in ```entities``` are
/// confluent and if so returns the set of all traversed states, together with
/// the loop.
/// see invariant
pub fn invariant_named(
&self,
reaction_rules: &[Reaction],
entities: &[Set],
symb: IdType,
) -> Option<(Vec<Set>, Vec<Set>)> {
let (prefix, hoop) =
self.lollipops_decomposed_named(reaction_rules,
entities.first()?,
symb)?;
let mut invariant = vec![];
invariant.append(&mut prefix.clone());
invariant.append(&mut hoop.clone());
let dimension = hoop.len();
for available_entities in entities {
let (new_prefix, new_hoop) =
self.lollipops_decomposed_named(reaction_rules,
available_entities,
symb)?;
if new_hoop.len() != dimension || !hoop.contains(new_hoop.first()?) {
return None;
}
invariant.append(&mut new_prefix.clone());
}
// remove duplicates, maybe better with sorting?
invariant = invariant
.iter()
.cloned()
.collect::<HashSet<_>>()
.iter()
.cloned()
.collect::<Vec<_>>();
Some((invariant, hoop))
}
/// Suppose the context has the form
/// Q1. ... Q1.Q2. ... Q2. ... Qn. ... Qn. ...
/// and that each context Q1, Q2, ... , Q(n-1) is provided for a large number
/// of times, enough to stabilize the system in a loop (while Qn is provided
/// infinitely many times). Then it can be the case that when the context
/// switches from Qi to Q(i+1), no matter what is the current state of the loop
/// for Qi at the moment of the switching, the system will stabilize in the same
/// loop for Q(i+1): if this is the case the system is called "loop confluent".
/// loop_confluent_named checks this property over the list of contexts
/// [Q1,Q2,...,Qn] and returns the lists of Loops, Distances and Dimensions for
/// all Qi's.
/// see loop_confluent
pub fn loop_confluent_named(
deltas: &[Self],
reaction_rules: &[Reaction],
entities: &[Set],
symb: IdType,
) -> Option<Vec<(usize, usize, Vec<Set>)>> {
deltas
.iter()
.map(|q| q.confluent_named(reaction_rules, entities, symb))
.collect::<Option<Vec<_>>>()
}
/// "strong confluence" requires loop confluence and additionally check
/// that even if the context is switched BEFORE REACHING THE LOOP for Qi
/// the traversed states are still confluent for Q(i+1)
/// IMPORTANT: this notion of confluence assumes each context can be executed 0
/// or more times
/// see strong_confluent
#[allow(clippy::type_complexity)]
pub fn strong_confluent_named(
deltas: &[Self],
reaction_rules: &[Reaction],
entities: &[Set],
symb: IdType,
) -> Option<Vec<(Vec<Set>, usize, Vec<Set>)>> {
deltas
.iter()
.map(|q| {
let (invariant, hoop) = q.invariant_named(reaction_rules,
entities,
symb)?;
let length = invariant.len();
Some((invariant, length, hoop))
})
.collect::<Option<Vec<_>>>()
}
// TODO: weak confluence
}