Refactoring :), in the middle of so please be patient

This commit is contained in:
elvis
2025-08-23 23:40:19 +02:00
parent f8740b8bd7
commit 8a492c7b8a
29 changed files with 2630 additions and 2489 deletions

495
src/rsprocess/system.rs Normal file
View File

@ -0,0 +1,495 @@
use serde::{Deserialize, Serialize};
use std::collections::HashMap;
use std::hash::Hash;
use std::rc::Rc;
use super::environment::Environment;
use super::graph::SystemGraph;
use super::label::Label;
use super::process::Process;
use super::reaction::Reaction;
use super::set::Set;
use super::translator::IdType;
use super::translator::Translator;
use super::transitions::TransitionsIterator;
#[derive(Clone, Debug, Deserialize, Serialize)]
pub struct System {
pub delta: Rc<Environment>,
pub available_entities: Set,
pub context_process: Process,
pub reaction_rules: Rc<Vec<Reaction>>,
}
type Trace = Vec<(Option<Rc<Label>>, Rc<System>)>;
impl System {
pub fn new() -> System {
System {
delta: Rc::new(Environment::new()),
available_entities: Set::new(),
context_process: Process::Nill,
reaction_rules: Rc::new(vec![]),
}
}
pub fn from(
delta: Rc<Environment>,
available_entities: Set,
context_process: Process,
reaction_rules: Rc<Vec<Reaction>>,
) -> System {
System {
delta: Rc::clone(&delta),
available_entities,
context_process,
reaction_rules: Rc::clone(&reaction_rules),
}
}
pub fn to_transitions_iterator<'a>(
&'a self
) -> Result<TransitionsIterator<'a>, String> {
TransitionsIterator::from(self)
}
/// see oneTransition, transition, smartTransition, smartOneTransition
pub fn one_transition(
&self
) -> Result<Option<(Label, System)>, String> {
let mut tr = self.to_transitions_iterator()?;
Ok(tr.next())
}
pub fn nth_transition(
&self,
n: usize,
) -> Result<Option<(Label, System)>, String> {
let mut tr = self.to_transitions_iterator()?;
Ok(tr.nth(n))
}
/// see allTransitions, smartAllTransitions
pub fn all_transitions(
&self
) -> Result<Vec<(Label, System)>, String> {
let tr = self.to_transitions_iterator()?;
Ok(tr.collect::<Vec<_>>())
}
/// see oneTarget, smartOneTarget, target, smartTarget
pub fn target(
&self
) -> Result<(i64, Set), String> {
let current = self.one_transition()?;
if current.is_none() {
return Ok((0, self.available_entities.clone()));
}
let mut n = 1;
let mut current = current.unwrap().1;
while let Some((_, next)) = current.one_transition()? {
current = next;
n += 1;
}
Ok((n, current.available_entities.clone()))
}
/// see oneRun, run, smartOneRunEK, smartRunEK
pub fn run(
self
) -> Result<Vec<Rc<Self>>, String> {
let mut res = vec![Rc::new(self)];
while let Some((_, next_sys)) = res.last().unwrap().one_transition()? {
res.push(Rc::new(next_sys));
}
Ok(res)
}
/// see smartOneRunECT, smartRunECT
pub fn run_separated(
&self
) -> Result<Vec<(Set, Set, Set)>, String> {
let mut res = vec![];
let current = self.one_transition()?;
if current.is_none() {
return Ok(res);
}
let current = current.unwrap();
let (available_entities, context, t) = current.0.get_context();
res.push((available_entities.clone(), context.clone(), t.clone()));
let mut current = current.1;
while let Some((label, next)) = current.one_transition()? {
current = next;
let (available_entities, context, t) = label.get_context();
res.push((available_entities.clone(), context.clone(), t.clone()));
}
Ok(res)
}
pub fn traces(
self,
n: usize,
) -> Result<Vec<Trace>, String> {
if n == 0 {
return Ok(vec![])
}
let mut n = n;
let mut res : Vec<Trace> = vec![];
let mut current_trace: Trace = vec![(None, Rc::new(self))];
let mut branch = vec![0];
let mut depth = 0;
let mut new_branch = true;
loop {
let next_sys =
current_trace[depth].1.nth_transition(branch[depth])?;
if let Some((current_label, next_sys)) = next_sys {
depth += 1;
if depth >= branch.len() {
branch.push(0);
current_trace.push((Some(Rc::new(current_label)),
Rc::new(next_sys)));
} else {
branch[depth] = 0;
current_trace[depth] = (Some(Rc::new(current_label)),
Rc::new(next_sys));
}
new_branch = true;
} else {
// at the bottom of a trace, we save to res, then backtrack
// until we find another possible path.
if new_branch {
res.push(current_trace[0..depth].to_vec());
new_branch = false;
n -= 1;
}
if n == 0 {
break;
}
if depth == 0 {
break;
}
depth -= 1;
branch[depth] += 1;
}
}
Ok(res)
}
}
/// Equality does not care about delta or reaction rules. Only entities and
/// context is compared
impl PartialEq for System {
// we ignore delta and reaction rules
fn eq(&self, other: &System) -> bool {
self.available_entities == other.available_entities &&
self.context_process == other.context_process
}
}
/// Equality does not care about delta or reaction rules. Only entities and
/// context is compared
impl Eq for System {}
/// Hash does not care about delta or reaction rules. Only entities and
/// context is hashed
impl Hash for System {
// ignores delta and reaction rules
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
self.available_entities.hash(state);
self.context_process.hash(state);
}
}
impl Default for System {
fn default() -> Self {
System::new()
}
}
// -----------------------------------------------------------------------------
// Loops
// -----------------------------------------------------------------------------
impl System {
/// A special case of systems is when the context recursively provides
/// always the same set of entities. The corresponding computation is
/// infinite. It consists of a finite sequence of states followed by a
/// looping sequence. IMPORTANT: We return all loops for all X = Q.X, by
/// varing X. The set of reactions Rs and the context x are constant. Each
/// state of the computation is distinguished by the current entities E.
/// Under these assumptions, the predicate lollipop finds the Prefixes and
/// the Loops sequences of entities.
/// see lollipop
pub fn lollipops(
&self
) -> Vec<(Vec<Set>, Vec<Set>)> {
self.delta.lollipops_decomposed(
&self.reaction_rules,
&self.available_entities,
)
}
/// Only returns the loop part of the lollipop, returns for all X, where
/// X = Q.X
/// see loop
pub fn lollipops_only_loop(
self
) -> Vec<Vec<Set>> {
let filtered =
self.delta.iter().filter_map(
|l|
l.1.filter_delta(l.0)
);
let find_loop_fn = |q| {
Reaction::find_only_loop(&self.reaction_rules,
self.available_entities.clone(),
q)
};
filtered.map(find_loop_fn).collect::<Vec<_>>()
}
/// A special case of systems is when the context recursively provides
/// always the same set of entities. The corresponding computation is
/// infinite. It consists of a finite sequence of states followed by a
/// looping sequence. IMPORTANT: We return all loops for all X = Q.X, by
/// varing X. The set of reactions Rs and the context x are constant. Each
/// state of the computation is distinguished by the current entities E.
/// Under these assumptions, the predicate lollipop finds the Prefixes and
/// the Loops sequences of entities.
/// see lollipop
pub fn lollipops_named(
&self,
symb: IdType
) -> Option<(Vec<Set>, Vec<Set>)> {
self.delta.lollipops_decomposed_named(
&self.reaction_rules,
&self.available_entities,
symb,
)
}
/// Only returns the loop part of the lollipop, returns for all X, where
/// X = Q.X
/// see loop
pub fn lollipops_only_loop_named(
&self,
symb: IdType
) -> Option<Vec<Set>> {
let filtered = self
.delta
.iter()
.filter_map(
|l|
if *l.0 == symb {
l.1.filter_delta(&symb)
} else {
None
}
)
.next();
let find_loop_fn = |q| {
Reaction::find_only_loop(&self.reaction_rules,
self.available_entities.clone(),
q)
};
filtered.map(find_loop_fn)
}
}
// -----------------------------------------------------------------------------
// Graph
// -----------------------------------------------------------------------------
impl System {
/// Creates a graph starting from a system as root node
pub fn digraph(
self
) -> Result<SystemGraph, String> {
use petgraph::Graph;
let mut graph = Graph::default();
let node = graph.add_node(self.clone());
let mut association = HashMap::new();
association.insert(self.clone(), node);
let mut stack = vec![self];
while let Some(current) = stack.pop() {
// depth first
let current_node = *association.get(&current).unwrap();
for (label, next) in TransitionsIterator::from(&current)? {
// if not already visited
let next_node = association.entry(next.clone()).or_insert_with(|| {
stack.push(next.clone());
graph.add_node(next)
});
graph.add_edge(current_node, *next_node, label);
}
}
Ok(graph)
}
}
// -----------------------------------------------------------------------------
// Statistics
// -----------------------------------------------------------------------------
impl System {
/// Non simulated statistics of a system.
/// Returns statistics about the system as a string.
/// see main_do(stat,MissingE)
pub fn statistics(
&self,
translator: &Translator,
) -> String {
use super::translator;
let mut result: String = "Statistics:\n".into();
result.push_str(
"=============================================================\n"
);
result.push_str(&format!(
"the initial state has {} entities:\n",
self.available_entities.len()
));
result.push_str(&format!(
"{}\n",
translator::SetDisplay::from(translator, &self.available_entities)
));
let reactants = self
.reaction_rules
.iter()
.fold(Set::new(), |acc, new| acc.union(&new.reactants));
result.push_str(&format!(
"The reactants are {}:\n{}\n",
reactants.len(),
translator::SetDisplay::from(translator, &reactants)
));
let inhibitors = self
.reaction_rules
.iter()
.fold(Set::new(), |acc, new| acc.union(&new.inhibitors));
result.push_str(&format!(
"The inhibitors are {}:\n{}\n",
inhibitors.len(),
translator::SetDisplay::from(translator, &inhibitors)
));
let products = self
.reaction_rules
.iter()
.fold(Set::new(), |acc, new| acc.union(&new.products));
result.push_str(&format!(
"The products are {}:\n{}\n",
products.len(),
translator::SetDisplay::from(translator, &products)
));
let total = reactants.union(&inhibitors.union(&products));
result.push_str(&format!(
"The reactions involve {} entities:\n{}\n",
total.len(),
translator::SetDisplay::from(translator, &total)
));
let entities_env = self.delta.all_elements();
result.push_str(&format!(
"The environment involves {} entities:\n{}\n",
entities_env.len(),
translator::SetDisplay::from(translator, &entities_env)
));
let entities_context = self.context_process.all_elements();
result.push_str(&format!(
"The context involves {} entities:\n{}\n",
entities_context.len(),
translator::SetDisplay::from(translator, &entities_context)
));
let entities_all = total
.union(&entities_env)
.union(&entities_context)
.union(&self.available_entities);
result.push_str(&format!(
"The whole RS involves {} entities:\n{}\n",
entities_all.len(),
translator::SetDisplay::from(translator, &entities_all)
));
let possible_e = products
.union(&self.available_entities)
.union(&entities_context);
let missing_e = reactants.subtraction(&possible_e);
result.push_str(&format!(
"There are {} reactants that will never be available:\n{}\n",
missing_e.len(),
translator::SetDisplay::from(translator, &missing_e)
));
let entities_not_needed = entities_context.subtraction(&total);
result.push_str(&format!(
"The context can provide {} entities that will never be used:\
\n{}\n",
entities_not_needed.len(),
translator::SetDisplay::from(translator, &entities_not_needed)
));
result.push_str(&format!(
"There are {} reactions in total.\n",
self.reaction_rules.len()
));
let mut admissible_reactions = vec![];
let mut nonadmissible_reactions = vec![];
for reaction in self.reaction_rules.iter() {
if reaction.reactants.is_disjoint(&missing_e) {
admissible_reactions.push(reaction);
} else {
nonadmissible_reactions.push(reaction);
}
}
result.push_str(&format!(
"- the applicable reactions are {}.\n",
admissible_reactions.len()
));
result.push_str(&format!(
"- there are {} reactions that will never be enabled.\n",
nonadmissible_reactions.len()
));
result.push_str(
"============================================================="
);
result
}
}