now workspaces for modular compilation (maybe faster)

This commit is contained in:
elvis
2025-09-12 16:34:58 +02:00
parent fa1127358d
commit e41d92ac36
44 changed files with 318 additions and 227 deletions

View File

@ -0,0 +1,813 @@
use std::cmp;
use std::collections::{HashMap, HashSet};
use std::fmt::Debug;
use std::rc::Rc;
use serde::{Deserialize, Serialize};
use super::choices::{BasicChoices, Choices, PositiveChoices};
use super::element::IdType;
use super::process::{BasicProcess, PositiveProcess, Process};
use super::reaction::{
BasicReaction, ExtensionReaction, PositiveReaction, Reaction,
};
use super::set::{BasicSet, PositiveSet, Set};
use super::translator::{Formatter, PrintableWithTranslator, Translator};
pub trait BasicEnvironment
where
Self: Clone + Debug + Default + Serialize + PrintableWithTranslator,
for<'a> Self: Deserialize<'a>,
{
type Id;
type Set: BasicSet;
type Choices: BasicChoices;
type Process: BasicProcess<Set = Self::Set, Id = Self::Id>;
type Reaction: BasicReaction<Set = Self::Set>;
fn get(&self, k: Self::Id) -> Option<&Self::Process>;
fn all_elements(&self) -> Self::Set;
fn unfold(
&self,
context: &Self::Process,
entities: &Self::Set,
) -> Result<Self::Choices, String>;
}
pub trait ExtensionsEnvironment: BasicEnvironment {
fn iter(&self) -> <&Self as IntoIterator>::IntoIter
where
for<'b> &'b Self: IntoIterator;
}
impl<T: BasicEnvironment> ExtensionsEnvironment for T {
fn iter(&self) -> <&Self as IntoIterator>::IntoIter
where
for<'b> &'b Self: IntoIterator,
{
self.into_iter()
}
}
// -----------------------------------------------------------------------------
// Loops
// -----------------------------------------------------------------------------
pub trait LoopEnvironment: BasicEnvironment {
#[allow(clippy::type_complexity)]
fn lollipops_decomposed(
&self,
reaction_rules: &[Self::Reaction],
available_entities: &Self::Set,
) -> Vec<(Vec<Self::Set>, Vec<Self::Set>)>;
fn lollipops_prefix_len_loop_decomposed(
&self,
reaction_rules: &[Self::Reaction],
available_entities: &Self::Set,
) -> Vec<(usize, Vec<Self::Set>)>;
fn lollipops_only_loop_decomposed(
&self,
reaction_rules: &[Self::Reaction],
available_entities: &Self::Set,
) -> Vec<Vec<Self::Set>>;
#[allow(clippy::type_complexity)]
fn lollipops_decomposed_named(
&self,
reaction_rules: &[Self::Reaction],
available_entities: &Self::Set,
symb: Self::Id,
) -> Option<(Vec<Self::Set>, Vec<Self::Set>)>;
fn lollipops_prefix_len_loop_decomposed_named(
&self,
reaction_rules: &[Self::Reaction],
available_entities: &Self::Set,
symb: Self::Id,
) -> Option<(usize, Vec<Self::Set>)>;
fn lollipops_only_loop_decomposed_named(
&self,
reaction_rules: &[Self::Reaction],
available_entities: &Self::Set,
symb: Self::Id,
) -> Option<Vec<Self::Set>>;
}
impl<T: BasicEnvironment + ExtensionsEnvironment> LoopEnvironment for T
where
for<'a> &'a T: IntoIterator<Item = (&'a T::Id, &'a T::Process)>,
T::Id: Eq,
{
/// A special case of systems is when the context recursively provides
/// always the same set of entities. The corresponding computation is
/// infinite. It consists of a finite sequence of states followed by a
/// looping sequence. IMPORTANT: We return all loops for all X = Q.X, by
/// varing X. The set of reactions Rs and the context x are constant. Each
/// state of the computation is distinguished by the current entities E.
/// Under these assumptions, the predicate lollipop finds the Prefixes and
/// the Loops sequences of entities.
/// see lollipop
fn lollipops_decomposed(
&self,
reaction_rules: &[Self::Reaction],
available_entities: &Self::Set,
) -> Vec<(Vec<Self::Set>, Vec<Self::Set>)> {
// FIXME: i think we are only interested in "x", not all symbols that
// satisfy X = pre(Q, rec(X))
let filtered = self.iter().filter_map(|l| l.1.filter_delta(l.0));
let find_loop_fn = |q| {
T::Reaction::find_loop(
reaction_rules,
available_entities.clone(),
q,
)
};
filtered.map(find_loop_fn).collect::<Vec<_>>()
}
fn lollipops_prefix_len_loop_decomposed(
&self,
reaction_rules: &[Self::Reaction],
available_entities: &Self::Set,
) -> Vec<(usize, Vec<Self::Set>)> {
let filtered = self.iter().filter_map(|l| l.1.filter_delta(l.0));
let find_loop_fn = |q| {
T::Reaction::find_prefix_len_loop(
reaction_rules,
available_entities.clone(),
q,
)
};
filtered.map(find_loop_fn).collect::<Vec<_>>()
}
/// see loop
fn lollipops_only_loop_decomposed(
&self,
reaction_rules: &[Self::Reaction],
available_entities: &Self::Set,
) -> Vec<Vec<Self::Set>> {
let filtered = self.iter().filter_map(|l| l.1.filter_delta(l.0));
let find_loop_fn = |q| {
T::Reaction::find_only_loop(reaction_rules, available_entities, q)
};
filtered.map(find_loop_fn).collect::<Vec<_>>()
}
/// A special case of systems is when the context recursively provides
/// always the same set of entities. The corresponding computation is
/// infinite. It consists of a finite sequence of states followed by a
/// looping sequence. IMPORTANT: We return all loops for all X = Q.X, by
/// varing X. The set of reactions Rs and the context x are constant. Each
/// state of the computation is distinguished by the current entities E.
/// Under these assumptions, the predicate lollipop finds the Prefixes and
/// the Loops sequences of entities.
/// see lollipop
fn lollipops_decomposed_named(
&self,
reaction_rules: &[Self::Reaction],
available_entities: &Self::Set,
symb: Self::Id,
) -> Option<(Vec<Self::Set>, Vec<Self::Set>)> {
let filtered = self
.iter()
.filter_map(|l| {
if *l.0 == symb {
l.1.filter_delta(&symb)
} else {
None
}
})
.next();
let find_loop_fn = |q| {
T::Reaction::find_loop(
reaction_rules,
available_entities.clone(),
q,
)
};
filtered.map(find_loop_fn)
}
fn lollipops_prefix_len_loop_decomposed_named(
&self,
reaction_rules: &[Self::Reaction],
available_entities: &Self::Set,
symb: Self::Id,
) -> Option<(usize, Vec<Self::Set>)> {
let filtered = self
.iter()
.filter_map(|l| {
if *l.0 == symb {
l.1.filter_delta(&symb)
} else {
None
}
})
.next();
let find_loop_fn = |q| {
T::Reaction::find_prefix_len_loop(
reaction_rules,
available_entities.clone(),
q,
)
};
filtered.map(find_loop_fn)
}
/// see loop
fn lollipops_only_loop_decomposed_named(
&self,
reaction_rules: &[Self::Reaction],
available_entities: &Self::Set,
symb: Self::Id,
) -> Option<Vec<Self::Set>> {
let filtered = self
.iter()
.filter_map(|l| {
if *l.0 == symb {
l.1.filter_delta(&symb)
} else {
None
}
})
.next();
let find_loop_fn = |q| {
T::Reaction::find_only_loop(reaction_rules, available_entities, q)
};
filtered.map(find_loop_fn)
}
}
// -----------------------------------------------------------------------------
#[derive(Clone, Debug, Default, Serialize, Deserialize)]
pub struct Environment {
definitions: HashMap<IdType, Process>,
}
impl BasicEnvironment for Environment {
type Process = Process;
type Set = Set;
type Choices = Choices;
type Id = IdType;
type Reaction = Reaction;
fn get(&self, k: IdType) -> Option<&Process> {
self.definitions.get(&k)
}
fn all_elements(&self) -> Set {
let mut acc = Set::default();
for (_, process) in self.definitions.iter() {
acc.push(&process.all_elements());
}
acc
}
/// unfold returns the list of choices for the context given the process
/// definitions environment. choices::Choices is a list of context moves
/// mapping a set of entities and the continuation.
/// see unfold
fn unfold(
&self,
context_process: &Process,
current_entities: &Set,
) -> Result<Choices, String> {
match context_process {
| Process::Nill => Ok(Choices::default()),
| Process::RecursiveIdentifier { identifier } => {
let newprocess = self.get(*identifier);
if let Some(newprocess) = newprocess {
self.unfold(newprocess, current_entities)
} else {
Err(format!("Missing symbol in context: {identifier}"))
}
},
| Process::EntitySet {
entities,
next_process,
} => Ok(Choices::from([(
Rc::new(entities.clone()),
Rc::clone(next_process),
)])),
| Process::Guarded {
reaction,
next_process,
} =>
if reaction.enabled(current_entities) {
Ok(Choices::from([(
Rc::new(reaction.products.clone()),
Rc::clone(next_process),
)]))
} else {
Ok(Choices::default())
},
| Process::WaitEntity {
repeat,
repeated_process: _,
next_process,
} if *repeat <= 0 => self.unfold(next_process, current_entities),
| Process::WaitEntity {
repeat,
repeated_process,
next_process,
} if *repeat == 1 => {
let mut choices1 =
self.unfold(repeated_process, current_entities)?;
choices1.replace(Rc::clone(next_process));
Ok(choices1)
},
| Process::WaitEntity {
repeat,
repeated_process,
next_process,
} => {
let mut choices1 =
self.unfold(repeated_process, current_entities)?;
choices1.replace(Rc::new(Process::WaitEntity {
repeat: (*repeat - 1),
repeated_process: Rc::clone(repeated_process),
next_process: Rc::clone(next_process),
}));
Ok(choices1)
},
| Process::Summation { children } => {
// short-circuits with try_fold.
children.iter().try_fold(Choices::default(), |mut acc, x| {
match self.unfold(x, current_entities) {
| Ok(mut choices) => {
acc.append(&mut choices);
Ok(acc)
},
| Err(e) => Err(e),
}
})
},
| Process::NondeterministicChoice { children } => {
// short-circuits with try_fold.
if children.is_empty() {
Ok(Choices::from(vec![(
Rc::new(Set::default()),
Rc::new(Process::Nill),
)]))
} else {
children.iter().try_fold(
Choices::default(),
|mut acc, x| {
acc.shuffle(self.unfold(x, current_entities)?);
Ok(acc)
},
)
}
},
}
}
}
impl PrintableWithTranslator for Environment {
fn print(
&self,
f: &mut std::fmt::Formatter,
translator: &Translator,
) -> std::fmt::Result {
write!(f, "{{env:")?;
let mut it = self.iter().peekable();
while let Some(el) = it.next() {
if it.peek().is_none() {
write!(
f,
"({} -> {})",
Formatter::from(translator, el.0),
Formatter::from(translator, el.1)
)?;
} else {
write!(
f,
"({} -> {}), ",
Formatter::from(translator, el.0),
Formatter::from(translator, el.1)
)?;
}
}
write!(f, "}}")
}
}
impl IntoIterator for Environment {
type Item = (IdType, Process);
type IntoIter = std::collections::hash_map::IntoIter<IdType, Process>;
fn into_iter(self) -> Self::IntoIter {
self.definitions.into_iter()
}
}
impl<'a> IntoIterator for &'a Environment {
type Item = (&'a IdType, &'a Process);
type IntoIter = std::collections::hash_map::Iter<'a, IdType, Process>;
fn into_iter(self) -> Self::IntoIter {
self.definitions.iter()
}
}
impl<const N: usize> From<[(IdType, Process); N]> for Environment {
fn from(arr: [(IdType, Process); N]) -> Self {
Environment {
definitions: HashMap::from(arr),
}
}
}
impl From<&[(IdType, Process)]> for Environment {
fn from(arr: &[(IdType, Process)]) -> Self {
Environment {
definitions: HashMap::from_iter(arr.to_vec()),
}
}
}
impl From<Vec<(IdType, Process)>> for Environment {
fn from(arr: Vec<(IdType, Process)>) -> Self {
Environment {
definitions: HashMap::from_iter(arr),
}
}
}
// -----------------------------------------------------------------------------
// Confluence
// -----------------------------------------------------------------------------
impl Environment {
/// Two set of entities E1 and E2 are confluent w.r.t. the perpetual context
/// delta iff they reach the same loop.
/// confluent checks if all the sets of entities in ```entities``` are
/// confluent and if so returns the maximal length of prefixes traversed
/// to reached the loop, its dimension (length) and the loop.
/// see confluent, confluents
pub fn confluent(
&self,
reaction_rules: &[Reaction],
entities: &[Set],
) -> Option<(usize, usize, Vec<Set>)> {
let all_loops = self.lollipops_prefix_len_loop_decomposed(
reaction_rules,
entities.first()?,
);
let (prefix_len, hoop) = all_loops.first()?.clone();
let dimension = hoop.len();
let mut max_distance = prefix_len;
for available_entities in entities.iter().skip(1) {
let all_loops = self.lollipops_prefix_len_loop_decomposed(
reaction_rules,
available_entities,
);
let (prefix_len, new_hoop) = all_loops.first()?;
if new_hoop.len() != dimension || !hoop.contains(new_hoop.first()?)
{
return None;
}
max_distance = cmp::max(max_distance, *prefix_len);
}
Some((max_distance, dimension, hoop))
}
/// Two set of entities E1 and E2 are confluent w.r.t. the perpetual context
/// Q iff they reach the same loop.
/// The predicate confluent(Rs,Q,Es,Loop,Distance,Dimension) checks if all
/// the sets of entities in Es are confluent and if so returns the Loop,
/// the maximal length of prefixes traversed to reached the loop and its
/// dimension (length). see confluent, confluents
pub fn confluent_named(
&self,
reaction_rules: &[Reaction],
entities: &[Set],
symb: IdType,
) -> Option<(usize, usize, Vec<Set>)> {
let (prefix_len, first_hoop) = self
.lollipops_prefix_len_loop_decomposed_named(
reaction_rules,
entities.first()?,
symb,
)?;
let dimension = first_hoop.len();
let mut max_distance = prefix_len;
let hoop = first_hoop;
for available_entities in entities.iter().skip(1) {
let (prefix_len, new_hoop) = self
.lollipops_prefix_len_loop_decomposed_named(
reaction_rules,
available_entities,
symb,
)?;
if new_hoop.len() != dimension || !hoop.contains(new_hoop.first()?)
{
return None;
}
max_distance = cmp::max(max_distance, prefix_len);
}
Some((max_distance, dimension, hoop))
}
/// invariant_named checks if all the sets of entities in ```entities``` are
/// confluent and if so returns the set of all traversed states, together
/// with the loop.
/// see invariant
pub fn invariant_named(
&self,
reaction_rules: &[Reaction],
entities: &[Set],
symb: IdType,
) -> Option<(Vec<Set>, Vec<Set>)> {
let (prefix, hoop) = self.lollipops_decomposed_named(
reaction_rules,
entities.first()?,
symb,
)?;
let mut invariant = vec![];
invariant.append(&mut prefix.clone());
invariant.append(&mut hoop.clone());
let dimension = hoop.len();
for available_entities in entities {
let (new_prefix, new_hoop) = self.lollipops_decomposed_named(
reaction_rules,
available_entities,
symb,
)?;
if new_hoop.len() != dimension || !hoop.contains(new_hoop.first()?)
{
return None;
}
invariant.append(&mut new_prefix.clone());
}
// remove duplicates, maybe better with sorting?
invariant = invariant
.iter()
.cloned()
.collect::<HashSet<_>>()
.iter()
.cloned()
.collect::<Vec<_>>();
Some((invariant, hoop))
}
/// Suppose the context has the form
/// Q1. ... Q1.Q2. ... Q2. ... Qn. ... Qn. ...
/// and that each context Q1, Q2, ... , Q(n-1) is provided for a large
/// number of times, enough to stabilize the system in a loop (while Qn
/// is provided infinitely many times). Then it can be the case that
/// when the context switches from Qi to Q(i+1), no matter what is the
/// current state of the loop for Qi at the moment of the switching, the
/// system will stabilize in the same loop for Q(i+1): if this is the
/// case the system is called "loop confluent". loop_confluent_named
/// checks this property over the list of contexts [Q1,Q2,...,Qn] and
/// returns the lists of Loops, Distances and Dimensions for all Qi's.
/// see loop_confluent
pub fn loop_confluent_named(
deltas: &[Self],
reaction_rules: &[Reaction],
entities: &[Set],
symb: IdType,
) -> Option<Vec<(usize, usize, Vec<Set>)>> {
deltas
.iter()
.map(|q| q.confluent_named(reaction_rules, entities, symb))
.collect::<Option<Vec<_>>>()
}
/// "strong confluence" requires loop confluence and additionally check
/// that even if the context is switched BEFORE REACHING THE LOOP for Qi
/// the traversed states are still confluent for Q(i+1)
/// IMPORTANT: this notion of confluence assumes each context can be
/// executed 0 or more times
/// see strong_confluent
#[allow(clippy::type_complexity)]
pub fn strong_confluent_named(
deltas: &[Self],
reaction_rules: &[Reaction],
entities: &[Set],
symb: IdType,
) -> Option<Vec<(Vec<Set>, usize, Vec<Set>)>> {
deltas
.iter()
.map(|q| {
let (invariant, hoop) =
q.invariant_named(reaction_rules, entities, symb)?;
let length = invariant.len();
Some((invariant, length, hoop))
})
.collect::<Option<Vec<_>>>()
}
// TODO: weak confluence
}
// -----------------------------------------------------------------------------
#[derive(Clone, Debug, Default, Serialize, Deserialize)]
pub struct PositiveEnvironment {
definitions: HashMap<IdType, PositiveProcess>,
}
impl BasicEnvironment for PositiveEnvironment {
type Id = IdType;
type Set = PositiveSet;
type Choices = PositiveChoices;
type Process = PositiveProcess;
type Reaction = PositiveReaction;
fn get(&self, k: Self::Id) -> Option<&Self::Process> {
self.definitions.get(&k)
}
fn all_elements(&self) -> Self::Set {
let mut acc = Self::Set::default();
for (_, process) in self.definitions.iter() {
acc.push(&process.all_elements());
}
acc
}
fn unfold(
&self,
context: &Self::Process,
entities: &Self::Set,
) -> Result<Self::Choices, String> {
match context {
| PositiveProcess::Nill => Ok(Self::Choices::default()),
| PositiveProcess::RecursiveIdentifier { identifier } => {
let newprocess = self.get(*identifier);
if let Some(newprocess) = newprocess {
self.unfold(newprocess, entities)
} else {
Err(format!("Missing symbol in context: {identifier}"))
}
},
| PositiveProcess::EntitySet {
entities,
next_process,
} => Ok(Self::Choices::from([(
Rc::new(entities.clone()),
Rc::clone(next_process),
)])),
| PositiveProcess::Guarded {
reaction,
next_process,
} =>
if reaction.enabled(entities) {
Ok(Self::Choices::from([(
Rc::new(reaction.products.clone()),
Rc::clone(next_process),
)]))
} else {
Ok(Self::Choices::default())
},
| PositiveProcess::WaitEntity {
repeat,
repeated_process: _,
next_process,
} if *repeat <= 0 => self.unfold(next_process, entities),
| PositiveProcess::WaitEntity {
repeat,
repeated_process,
next_process,
} if *repeat == 1 => {
let mut choices1 = self.unfold(repeated_process, entities)?;
choices1.replace(Rc::clone(next_process));
Ok(choices1)
},
| PositiveProcess::WaitEntity {
repeat,
repeated_process,
next_process,
} => {
let mut choices1 = self.unfold(repeated_process, entities)?;
choices1.replace(Rc::new(PositiveProcess::WaitEntity {
repeat: (*repeat - 1),
repeated_process: Rc::clone(repeated_process),
next_process: Rc::clone(next_process),
}));
Ok(choices1)
},
| PositiveProcess::Summation { children } => {
// short-circuits with try_fold.
children.iter().try_fold(
Self::Choices::default(),
|mut acc, x| match self.unfold(x, entities) {
| Ok(mut choices) => {
acc.append(&mut choices);
Ok(acc)
},
| Err(e) => Err(e),
},
)
},
| PositiveProcess::NondeterministicChoice { children } => {
// short-circuits with try_fold.
if children.is_empty() {
Ok(Self::Choices::from(vec![(
Rc::new(Self::Set::default()),
Rc::new(Self::Process::default()),
)]))
} else {
children.iter().try_fold(
Self::Choices::default(),
|mut acc, x| {
acc.shuffle(self.unfold(x, entities)?);
Ok(acc)
},
)
}
},
}
}
}
impl PrintableWithTranslator for PositiveEnvironment {
fn print(
&self,
f: &mut std::fmt::Formatter,
translator: &Translator,
) -> std::fmt::Result {
write!(f, "{{env:")?;
let mut it = self.iter().peekable();
while let Some(el) = it.next() {
if it.peek().is_none() {
write!(
f,
"({} -> {})",
Formatter::from(translator, el.0),
Formatter::from(translator, el.1)
)?;
} else {
write!(
f,
"({} -> {}), ",
Formatter::from(translator, el.0),
Formatter::from(translator, el.1)
)?;
}
}
write!(f, "}}")
}
}
impl IntoIterator for PositiveEnvironment {
type Item = (IdType, PositiveProcess);
type IntoIter =
std::collections::hash_map::IntoIter<IdType, PositiveProcess>;
fn into_iter(self) -> Self::IntoIter {
self.definitions.into_iter()
}
}
impl<'a> IntoIterator for &'a PositiveEnvironment {
type Item = (&'a IdType, &'a PositiveProcess);
type IntoIter =
std::collections::hash_map::Iter<'a, IdType, PositiveProcess>;
fn into_iter(self) -> Self::IntoIter {
self.definitions.iter()
}
}
impl From<&Environment> for PositiveEnvironment {
fn from(value: &Environment) -> Self {
PositiveEnvironment {
definitions: value
.definitions
.iter()
.map(|(id, proc)| (*id, proc.into()))
.collect::<HashMap<_, _>>(),
}
}
}
impl From<Environment> for PositiveEnvironment {
fn from(value: Environment) -> Self {
(&value).into()
}
}