use serde::{Deserialize, Serialize}; use std::cmp; use std::collections::{HashMap, HashSet}; use std::fmt::Debug; use std::rc::Rc; use super::choices::{BasicChoices, Choices, PositiveChoices}; use super::process::{BasicProcess, PositiveProcess, Process}; use super::reaction::{Reaction, BasicReaction, ExtensionReaction}; use super::set::{BasicSet, PositiveSet, Set}; use super::element::IdType; use super::translator::{Translator, PrintableWithTranslator, Formatter}; pub trait BasicEnvironment where Self: Clone + Debug + Default + Serialize + PrintableWithTranslator, for<'a> Self: Deserialize<'a> { type Id; type Set: BasicSet; type Choices: BasicChoices; type Process: BasicProcess; fn get(&self, k: Self::Id) -> Option<&Self::Process>; fn all_elements(&self) -> Self::Set; fn unfold( &self, context: &Self::Process, entities: &Self::Set, ) -> Result; } #[derive(Clone, Debug, Default, Serialize, Deserialize)] pub struct Environment { definitions: HashMap, } impl BasicEnvironment for Environment { type Process = Process; type Set = Set; type Choices = Choices; type Id = IdType; fn get(&self, k: IdType) -> Option<&Process> { self.definitions.get(&k) } fn all_elements(&self) -> Set { let mut acc = Set::default(); for (_, process) in self.definitions.iter() { acc.push(&process.all_elements()); } acc } /// unfold returns the list of choices for the context given the process /// definitions environment. choices::Choices is a list of context moves /// mapping a set of entities and the continuation. /// see unfold fn unfold( &self, context_process: &Process, current_entities: &Set, ) -> Result { match context_process { Process::Nill => { Ok(Choices::default()) }, Process::RecursiveIdentifier { identifier } => { let newprocess = self.get(*identifier); if let Some(newprocess) = newprocess { self.unfold(newprocess, current_entities) } else { Err(format!("Missing symbol in context: {identifier}")) } } Process::EntitySet { entities, next_process, } => { Ok(Choices::from([( Rc::new(entities.clone()), Rc::clone(next_process), )])) }, Process::Guarded { reaction, next_process } => { if reaction.enabled(current_entities) { Ok(Choices::from([(Rc::new(reaction.products.clone()), Rc::clone(next_process))])) } else { Ok(Choices::default()) } } Process::WaitEntity { repeat, repeated_process: _, next_process, } if *repeat <= 0 => { self.unfold(next_process, current_entities) }, Process::WaitEntity { repeat, repeated_process, next_process, } if *repeat == 1 => { let mut choices1 = self.unfold(repeated_process, current_entities)?; choices1.replace(Rc::clone(next_process)); Ok(choices1) } Process::WaitEntity { repeat, repeated_process, next_process, } => { let mut choices1 = self.unfold(repeated_process, current_entities)?; choices1.replace(Rc::new(Process::WaitEntity { repeat: (*repeat - 1), repeated_process: Rc::clone(repeated_process), next_process: Rc::clone(next_process), })); Ok(choices1) } Process::Summation { children } => { // short-circuits with try_fold. children.iter().try_fold(Choices::default(), |mut acc, x| { match self.unfold(x, current_entities) { Ok(mut choices) => { acc.append(&mut choices); Ok(acc) } Err(e) => Err(e), } }) } Process::NondeterministicChoice { children } => { // short-circuits with try_fold. if children.is_empty() { Ok(Choices::from(vec![( Rc::new(Set::default()), Rc::new(Process::Nill), )])) } else { children.iter().try_fold(Choices::default(), |mut acc, x| { acc.shuffle(self.unfold(x, current_entities)?); Ok(acc) }) } } } } } impl PrintableWithTranslator for Environment { fn print(&self, f: &mut std::fmt::Formatter, translator: &Translator) -> std::fmt::Result { write!(f, "{{env:")?; let mut it = self.iter().peekable(); while let Some(el) = it.next() { if it.peek().is_none() { write!( f, "({} -> {})", translator.decode(*el.0).unwrap_or("Missing".into()), Formatter::from(translator, el.1) )?; } else { write!( f, "({} -> {}), ", translator.decode(*el.0).unwrap_or("Missing".into()), Formatter::from(translator, el.1) )?; } } write!(f, "}}") } } impl Environment { pub fn iter(&self) -> std::collections::hash_map::Iter<'_, u32, Process> { self.definitions.iter() } } impl From<[(IdType, Process); N]> for Environment { fn from(arr: [(IdType, Process); N]) -> Self { Environment { definitions: HashMap::from(arr), } } } impl From<&[(IdType, Process)]> for Environment { fn from(arr: &[(IdType, Process)]) -> Self { Environment { definitions: HashMap::from_iter(arr.to_vec()), } } } impl From> for Environment { fn from(arr: Vec<(IdType, Process)>) -> Self { Environment { definitions: HashMap::from_iter(arr), } } } // ----------------------------------------------------------------------------- // Loops // ----------------------------------------------------------------------------- impl Environment { /// A special case of systems is when the context recursively provides /// always the same set of entities. The corresponding computation is /// infinite. It consists of a finite sequence of states followed by a /// looping sequence. IMPORTANT: We return all loops for all X = Q.X, by /// varing X. The set of reactions Rs and the context x are constant. Each /// state of the computation is distinguished by the current entities E. /// Under these assumptions, the predicate lollipop finds the Prefixes and /// the Loops sequences of entities. /// see lollipop pub fn lollipops_decomposed( &self, reaction_rules: &[Reaction], available_entities: &Set, ) -> Vec<(Vec, Vec)> { // FIXME: i think we are only interested in "x", not all symbols that // satisfy X = pre(Q, rec(X)) let filtered = self.iter().filter_map(|l| l.1.filter_delta(l.0)); let find_loop_fn = |q| Reaction::find_loop(reaction_rules, available_entities.clone(), q); filtered.map(find_loop_fn).collect::>() } pub fn lollipops_prefix_len_loop_decomposed( &self, reaction_rules: &[Reaction], available_entities: &Set, ) -> Vec<(usize, Vec)> { let filtered = self.iter().filter_map(|l| l.1.filter_delta(l.0)); let find_loop_fn = |q| Reaction::find_prefix_len_loop(reaction_rules, available_entities.clone(), q); filtered.map(find_loop_fn).collect::>() } /// see loop pub fn lollipops_only_loop_decomposed( &self, reaction_rules: &[Reaction], available_entities: &Set, ) -> Vec> { let filtered = self.iter().filter_map(|l| l.1.filter_delta(l.0)); let find_loop_fn = |q| Reaction::find_only_loop(reaction_rules, available_entities.clone(), q); filtered.map(find_loop_fn).collect::>() } /// A special case of systems is when the context recursively provides /// always the same set of entities. The corresponding computation is /// infinite. It consists of a finite sequence of states followed by a /// looping sequence. IMPORTANT: We return all loops for all X = Q.X, by /// varing X. The set of reactions Rs and the context x are constant. Each /// state of the computation is distinguished by the current entities E. /// Under these assumptions, the predicate lollipop finds the Prefixes and /// the Loops sequences of entities. /// see lollipop pub fn lollipops_decomposed_named( &self, reaction_rules: &[Reaction], available_entities: &Set, symb: IdType, ) -> Option<(Vec, Vec)> { let filtered = self .iter() .filter_map( |l| if *l.0 == symb { l.1.filter_delta(&symb) } else { None } ) .next(); let find_loop_fn = |q| Reaction::find_loop(reaction_rules, available_entities.clone(), q); filtered.map(find_loop_fn) } pub fn lollipops_prefix_len_loop_decomposed_named( &self, reaction_rules: &[Reaction], available_entities: &Set, symb: IdType, ) -> Option<(usize, Vec)> { let filtered = self .iter() .filter_map( |l| if *l.0 == symb { l.1.filter_delta(&symb) } else { None } ) .next(); let find_loop_fn = |q| Reaction::find_prefix_len_loop(reaction_rules, available_entities.clone(), q); filtered.map(find_loop_fn) } /// see loop pub fn lollipops_only_loop_decomposed_named( &self, reaction_rules: &[Reaction], available_entities: &Set, symb: IdType, ) -> Option> { let filtered = self .iter() .filter_map( |l| if *l.0 == symb { l.1.filter_delta(&symb) } else { None } ) .next(); let find_loop_fn = |q| Reaction::find_only_loop(reaction_rules, available_entities.clone(), q); filtered.map(find_loop_fn) } } // ----------------------------------------------------------------------------- // Confluence // ----------------------------------------------------------------------------- impl Environment { /// Two set of entities E1 and E2 are confluent w.r.t. the perpetual context /// delta iff they reach the same loop. /// confluent checks if all the sets of entities in ```entities``` are confluent /// and if so returns the maximal length of prefixes traversed to reached the /// loop, its dimension (length) and the loop. /// see confluent, confluents pub fn confluent( &self, reaction_rules: &[Reaction], entities: &[Set], ) -> Option<(usize, usize, Vec)> { let all_loops = self.lollipops_prefix_len_loop_decomposed(reaction_rules, entities.first()?); let (prefix_len, hoop) = all_loops.first()?.clone(); let dimension = hoop.len(); let mut max_distance = prefix_len; for available_entities in entities.iter().skip(1) { let all_loops = self.lollipops_prefix_len_loop_decomposed(reaction_rules, available_entities); let (prefix_len, new_hoop) = all_loops.first()?; if new_hoop.len() != dimension || !hoop.contains(new_hoop.first()?) { return None; } max_distance = cmp::max(max_distance, *prefix_len); } Some((max_distance, dimension, hoop)) } /// Two set of entities E1 and E2 are confluent w.r.t. the perpetual context Q /// iff they reach the same loop. /// The predicate confluent(Rs,Q,Es,Loop,Distance,Dimension) checks if all the /// sets of entities in Es are confluent and if so returns the Loop, the maximal /// length of prefixes traversed to reached the loop and its dimension (length). /// see confluent, confluents pub fn confluent_named( &self, reaction_rules: &[Reaction], entities: &[Set], symb: IdType, ) -> Option<(usize, usize, Vec)> { let (prefix_len, first_hoop) = self.lollipops_prefix_len_loop_decomposed_named(reaction_rules, entities.first()?, symb)?; let dimension = first_hoop.len(); let mut max_distance = prefix_len; let hoop = first_hoop; for available_entities in entities.iter().skip(1) { let (prefix_len, new_hoop) = self.lollipops_prefix_len_loop_decomposed_named( reaction_rules, available_entities, symb, )?; if new_hoop.len() != dimension || !hoop.contains(new_hoop.first()?) { return None; } max_distance = cmp::max(max_distance, prefix_len); } Some((max_distance, dimension, hoop)) } /// invariant_named checks if all the sets of entities in ```entities``` are /// confluent and if so returns the set of all traversed states, together with /// the loop. /// see invariant pub fn invariant_named( &self, reaction_rules: &[Reaction], entities: &[Set], symb: IdType, ) -> Option<(Vec, Vec)> { let (prefix, hoop) = self.lollipops_decomposed_named(reaction_rules, entities.first()?, symb)?; let mut invariant = vec![]; invariant.append(&mut prefix.clone()); invariant.append(&mut hoop.clone()); let dimension = hoop.len(); for available_entities in entities { let (new_prefix, new_hoop) = self.lollipops_decomposed_named(reaction_rules, available_entities, symb)?; if new_hoop.len() != dimension || !hoop.contains(new_hoop.first()?) { return None; } invariant.append(&mut new_prefix.clone()); } // remove duplicates, maybe better with sorting? invariant = invariant .iter() .cloned() .collect::>() .iter() .cloned() .collect::>(); Some((invariant, hoop)) } /// Suppose the context has the form /// Q1. ... Q1.Q2. ... Q2. ... Qn. ... Qn. ... /// and that each context Q1, Q2, ... , Q(n-1) is provided for a large number /// of times, enough to stabilize the system in a loop (while Qn is provided /// infinitely many times). Then it can be the case that when the context /// switches from Qi to Q(i+1), no matter what is the current state of the loop /// for Qi at the moment of the switching, the system will stabilize in the same /// loop for Q(i+1): if this is the case the system is called "loop confluent". /// loop_confluent_named checks this property over the list of contexts /// [Q1,Q2,...,Qn] and returns the lists of Loops, Distances and Dimensions for /// all Qi's. /// see loop_confluent pub fn loop_confluent_named( deltas: &[Self], reaction_rules: &[Reaction], entities: &[Set], symb: IdType, ) -> Option)>> { deltas .iter() .map(|q| q.confluent_named(reaction_rules, entities, symb)) .collect::>>() } /// "strong confluence" requires loop confluence and additionally check /// that even if the context is switched BEFORE REACHING THE LOOP for Qi /// the traversed states are still confluent for Q(i+1) /// IMPORTANT: this notion of confluence assumes each context can be executed 0 /// or more times /// see strong_confluent #[allow(clippy::type_complexity)] pub fn strong_confluent_named( deltas: &[Self], reaction_rules: &[Reaction], entities: &[Set], symb: IdType, ) -> Option, usize, Vec)>> { deltas .iter() .map(|q| { let (invariant, hoop) = q.invariant_named(reaction_rules, entities, symb)?; let length = invariant.len(); Some((invariant, length, hoop)) }) .collect::>>() } // TODO: weak confluence } // ----------------------------------------------------------------------------- #[derive(Clone, Debug, Default, Serialize, Deserialize)] pub struct PositiveEnvironment { definitions: HashMap, } impl BasicEnvironment for PositiveEnvironment { type Id = IdType; type Set = PositiveSet; type Choices = PositiveChoices; type Process = PositiveProcess; fn get(&self, k: Self::Id) -> Option<&Self::Process> { self.definitions.get(&k) } fn all_elements(&self) -> Self::Set { let mut acc = Self::Set::default(); for (_, process) in self.definitions.iter() { acc.push(&process.all_elements()); } acc } fn unfold( &self, context: &Self::Process, entities: &Self::Set, ) -> Result { match context { PositiveProcess::Nill => { Ok(Self::Choices::default()) }, PositiveProcess::RecursiveIdentifier { identifier } => { let newprocess = self.get(*identifier); if let Some(newprocess) = newprocess { self.unfold(newprocess, entities) } else { Err(format!("Missing symbol in context: {identifier}")) } } PositiveProcess::EntitySet { entities, next_process, } => { Ok(Self::Choices::from([( Rc::new(entities.clone()), Rc::clone(next_process), )])) }, PositiveProcess::Guarded { reaction, next_process } => { if reaction.enabled(entities) { Ok(Self::Choices::from([(Rc::new(reaction.products.clone()), Rc::clone(next_process))])) } else { Ok(Self::Choices::default()) } } PositiveProcess::WaitEntity { repeat, repeated_process: _, next_process, } if *repeat <= 0 => { self.unfold(next_process, entities) }, PositiveProcess::WaitEntity { repeat, repeated_process, next_process, } if *repeat == 1 => { let mut choices1 = self.unfold(repeated_process, entities)?; choices1.replace(Rc::clone(next_process)); Ok(choices1) } PositiveProcess::WaitEntity { repeat, repeated_process, next_process, } => { let mut choices1 = self.unfold(repeated_process, entities)?; choices1.replace(Rc::new(PositiveProcess::WaitEntity { repeat: (*repeat - 1), repeated_process: Rc::clone(repeated_process), next_process: Rc::clone(next_process), })); Ok(choices1) } PositiveProcess::Summation { children } => { // short-circuits with try_fold. children.iter().try_fold( Self::Choices::default(), |mut acc, x| { match self.unfold(x, entities) { Ok(mut choices) => { acc.append(&mut choices); Ok(acc) } Err(e) => Err(e), } }) } PositiveProcess::NondeterministicChoice { children } => { // short-circuits with try_fold. if children.is_empty() { Ok(Self::Choices::from(vec![( Rc::new(Self::Set::default()), Rc::new(Self::Process::default()), )])) } else { children.iter().try_fold( Self::Choices::default(), |mut acc, x| { acc.shuffle(self.unfold(x, entities)?); Ok(acc) }) } } } } } impl PrintableWithTranslator for PositiveEnvironment { fn print(&self, f: &mut std::fmt::Formatter, translator: &Translator) -> std::fmt::Result { write!(f, "{{env:")?; let mut it = self.iter().peekable(); while let Some(el) = it.next() { if it.peek().is_none() { write!( f, "({} -> {})", translator.decode(*el.0).unwrap_or("Missing".into()), Formatter::from(translator, el.1) )?; } else { write!( f, "({} -> {}), ", translator.decode(*el.0).unwrap_or("Missing".into()), Formatter::from(translator, el.1) )?; } } write!(f, "}}") } } impl PositiveEnvironment { pub fn iter( &self ) -> impl std::iter::Iterator { self.definitions.iter() } } impl From<&Environment> for PositiveEnvironment { fn from(value: &Environment) -> Self { PositiveEnvironment { definitions: value .definitions .iter() .map(|(id, proc)| (*id, proc.into())) .collect::>() } } } impl From for PositiveEnvironment { fn from(value: Environment) -> Self { (&value).into() } }