
Chapter 1

Introduction

Reaction Systems (RSs) are a successful computational framework inspired by biological
system. The underlying idea is that the interactions between biochemical reactions as
well as the functioning of single reactions are based on the mechanisms of facilitation
and inhibition.

A Reaction System consists of a set of entities and a set of reactions over them.
Each reaction produces some set of entities P (called products) if enabled, meaning if
a set R (called reactants) is wholly present and if a set I (called inhibitors) of entities
is completely absent. The use of inhibitors induces non-monotonic behaviors that are
difficult to analyze. This work aims to build software that aids in the study and analysis
of certain classes of Reaction Systems.

Entities can also be provided by an external context sequence to simulate in silico
biological experiment.

1

2

Chapter 2

Background

2.1 Reaction Systems
Reaction Systems are a qualitative model inspired by biochemical processes. The behav-
ior is described by reactions, each of them requiring some reactants R and requiring the
absence of inhibitors I to produce some product elements P . “Elements” and “entities”
will be used interchangeably to refer to elements of these sets.
Definition (Reaction). A reaction is a triplet a = (R, I, P), where R, I, P are finite sets
with R ∩ I = ∅ and R, I, P 6= ∅. If S is a set such that R, I, P ⊆ S, then a is a reaction
in S.

The reactions (R, I, P) operate over a finite set of entities S, called background set.
The theory of RSs is based on three assumptions:

• no permanency, meaning entities vanish unless sustained by a reaction;
• no counting, meaning the exact quantity of each entity is irrelevant;
• threshold nature of resources, meaning if an entity is present, it is present for all

possible reactions.

Definition. Let T be a finite set.

1. Let a be a reaction. Then a is enabled by T , denoted by ena(T) if Ra ⊆ T and
Ia∩T = ∅. The result of a on T , denoted by resa(T), is defined by: resa(T) := Pa

if ena(T) and resa(T) := ∅ otherwise.

2. Let A be a finite set of reactions. The result of A on T , denoted by resA(T), is
defined as resA(T) :=

⋃
a∈A resa(T).

Note that by virtue of the second assumption (2) if two reactions a, b ∈ A, with
both a and b enabled by T, then even if Ra ∩ Rb 6= ∅, still both Pa ⊆ resA(T) and
Pb ⊆ resA(T). Both reactions can use Ra ∩ Rb to produce their products. This would
not be allowed in other models such as Petri nets [6], a common model of concurrent
systems.

Let rac(S) be the set of all the reactions in S.

3

Definition (Reaction System). A Reaction System (RS) is a pair A = (S,A) such that
S is a finite set and A ⊆ rac(S) is a finite set of reactions in S.

The set S is called the background set of A; its elements, called entities, represent
molecular entities (e.g. atoms, ions, molecules) that may be present in the state of the
system modeled by A. The set A is called the set of reactions of A. Since S is finite, so
is A.

the behavior of a RS is formalized through the notion of an interactive process.
Definition (Interactive Process). Let A = (S,A) be a RS and let n > 0. An n-step
interactive process in A is a pair π = (γ, δ) such that γ := {Ci}i∈[0,n] is the context
sequence and δ := {Di}i∈[0,n] is the result sequence, where ∀i ∈ [0, n], Ci, Di ⊆ S,
D0 = ∅ and ∀i ∈ [0, n − 1], Di+1 := resA(Di ∪ Ci). We call τ := W0, . . . ,Wn the state
sequence, where Wi := Ci ∪Di for all i ∈ [0, n].

Note that Ci and Di do not have to be disjointed.
W0 = C0is called the initial state of π. If Ci ⊆ Di for all i ∈ [1, n] then π is called

context-independent. For context-independent interactive process, we can take Ci = ∅
for all i = [1, n] without changing the state sequence.

In a context-independent state sequence τ = W0, . . . ,Wi,Wi+1, . . . ,Wn, during the
transition from Wi to Wi+1 all entities from Wi−resA(Wi) will not persist. This reflects
the assumption of no permanency (1). Thus, if τ is not context-independent, an entity
from a current state can also be sustained by the context Ci+1.
Definition (Sequence Shift). Let γ = {Ci}i∈[0,n] a context sequence. Given a positive
integer k ≤ n, let γk := {Ci+k}i∈[0,n−k].

2.1.1 Example: A binary counter

A reaction system can act as a cyclic n-bit counter in which external signals trigger
increment or decrement operations. To build the counter, let n > 0 be an integer and
define the background set as {p0, p1, . . . , pn−1} ∪ {dec, inc}.

Five sets of reactions describe a binary counter-like behavior:
aj = ({pj}, dec, inc, pj), ∀j ∈ [0, n]

bj = ({inc, p0, p1, . . . , pj−1}, dec, pj , pj), ∀j ∈ [0, n]

cj,k = ({inc, pk}, dec, pj , pk), ∀j, ks.t.0 ≤ j < k < n

dj = ({dec}, inc, p0, p1, . . . , pj , pj), ∀j ∈ [0, n]

ej,k = ({dec, pj , pk}, inc, pk), ∀j, ks.t.0 ≤ j < k < n

where reactions a cause the bits to be restrained in the next state if there is no
operation, reactions b implement the increment operation by flipping the least significant
zero to one, reactions c let the more significant bits remain, reactions d implements the
decrement operation by flipping to one the bits when there is no one at a lower position,
and reactions e let the more significant bits remain.

The complete RS Bn is defined as follows: Bn = (Sn, Bn) where Sn = {p0, p1, . . . , pn−1}∪
{dec, inc} and Bn = {aj , bj , dj |0 ≤ k < n} ∪ {cj,k, ej,k|0 ≤ l < k < n}.

4

To illustrate the system in action consider the sequence of contexts: C0 = {p1, p3}, C1 =
∅, C2 = {inc}, C3 = {inc}, C4 = {dec}, C5 = {dec, inc}. This gives the result se-
quence δ = ∅.{p1, p3}.{p1, p3}.{p0, p1, p3}.{p2, p3}.{p0, p1, p3}.∅ and state sequence τ =
{p1, p3}.{p1, p3}.{p1, p3, inc}.{p0, p1, p3, inc}.{p2, p3, dec}.{p0, p1, p3, dec, inc}.∅ that in
binary representation is {1010}.{1010}.{1010}.{1011}.{1100}.{1011}.{0000} by ignoring
inc and dec.

2.2 SOS rules for reaction systems
The behavior of a RS could be defined as a discrete time interactive process: a finite
context sequence describes the entities provided by the environment at each step, the
current state is determined by the union of the entities coming from the environment
with those produced from the previous step and the state sequence is determined by
applying all and only the enabled reactions to the set of entities available in the current
state.

Given the context sequence, the semantics of RSs is uniquely determined and can
be represented as a finite, deterministic and labeled or unlabeled transition system. RS
have had defined a Labeled Transition System (LTS) semantics as seen in[3].
Definition (RS processes). Let S be a set of entities. An RS process P is any term
defined by the following grammar:

P ::= [M] mixture process
M ::= (R, I, P) reaction

| D set of entities
| K context process
| M |M parallel composition

K ::= 0 nil context
| X process variable
| C.X set of entities followed by context
| K +K non deterministic choice
| recX.K recursive operator

Where
R, I, P ⊆ S non empty sets of entities
C,D ⊆ S possibly empty set of entities
X a process variable

An RS process P embeds a mixture process M obtained as he parallel composition
of some reactions (R, I, P), some set of currently present entities D (possibly the empty
set ∅), and some context process K. For brevity sake M1|M2|M3 =

∏
i∈{1,2,3}Mi. A

process context K is a possibly nondeterministic and recursive system: the nil context
0 stops the computation; the prefixed context C.K provides the entities in C and then
uses K as the next context; the non deterministic choice K1 +K2 allows the context to
behave either as K1 or K2; X is a process variable; and recX.K is the recursive operator
of process algebras. For brevity sake K1 +K2 +K3 =

∑
i∈{1,2,3}Ki.

5

Definition (RSs as RS processes). Let A = (S,A) be a RS, and π = (γ, δ) an n-step
interactive process in A with γ = {Ci}i∈[0,n] and δ = {Di}i∈[0,n]. For any step i ∈ [0, n],
the corresponding RS process JA, πKi is defined as follows:

JA, πKi :=

[∏
a∈A

a|Di|Kγi

]
where the context process Kγi := Ci.Ci+1.Cn.0 is the sequentialization of the

entities offered by γi.
Definition (Label). A label is a tuple 〈W .R, I, P 〉 with W,R, I, P ⊆ S.

In a transition label 〈W . R, I, P 〉, W records the set of entities currently in the
system (produced in the previous step or provided by the context), R records the set of
entities whose presence is assumed (either because they are needed as reactants on an
applied reaction or because their presence prevents the application of some reaction), I
records the set of entities whose absence is assumed, and P records the set of entities
produced by the applied reactions.
Definition (Operational Semantics). The operational semantics of processes is defined
by the set of SOS inference rules in figure 2.1.

(Ent)
D

〈D . ∅,∅,∅〉−−−−−−−→ ∅
(Ctx)

C.K
〈C . ∅,∅,∅〉−−−−−−−→ K

K [recX.K/X]
〈W.R,I,P 〉−−−−−−−→ K ′

(Rec)
recX.K

〈W . R,I,P 〉−−−−−−−−→ K ′

K1
〈W.R,I,P 〉−−−−−−−→ K ′

1 (Suml)
K1 +K2

〈W . R,I,P 〉−−−−−−−−→ K ′
1

K2
〈W.R,I,P 〉−−−−−−−→ K ′

2 (Sumr)
K1 +K2

〈W . R,I,P 〉−−−−−−−−→ K ′
2

(Pro)
(R, I, P)

〈∅ . R,I,P 〉−−−−−−−→ (R, I, P)|P

J ⊆ I Q ⊆ R J ∪Q 6= ∅
(Inh)

(R, I, P)
〈∅ . R,I,P 〉−−−−−−−→ (R, I, P)|P

M1
〈W1.R1,I1,P1〉−−−−−−−−−→ M ′

1 M2
〈W2.R2,I2,P2〉−−−−−−−−−→ M ′

2 (W1 ∪W2 ∪R1 ∪R2) ∩ (I1 ∪ I2) (Par)
M1|M2

〈W1∪W2 . R1∪R2,I1∪I2,P1∪P2〉−−−−−−−−−−−−−−−−−−−−→ M ′
1|M ′

2

M
〈W.R,I,P 〉−−−−−−−→ M ′ R ⊆ W (Sys)
[M]

〈W . R,I,P 〉−−−−−−−−→ [M ′]

Figure 2.1: SOS semantics of the reaction system process

6

K [recX.K/X] denotes the process obtained by replacing in K every free occurrence
of the variable X with its recursive definition recX.K. The rule (Pro), executes the
reaction (R, I, P) (its reactants, inhibitors, and products are recorded the label), which
remains available at the next step together with P . The rule (Inh) applies when the
reaction (R, I, P) should not be executed; it records in the label the possible causes for
which the reaction is disabled: possibly some inhibiting entities (J ⊆ I) are present or
some reactants (Q ⊆ R) are missing, with J ∪Q 6= ∅, as at least one cause is needed for
explaining why the reaction is not enabled.

2.3 Positive Reaction Systems
A particular kind of Reaction Systems are those without inhibitors. Such reactions
are called positive and can be simply written as pairs (R,P) and are equivalent to
(R, ∅, P). One can always encode any standard RS A = (S,A) into an equivalent one
without inhibitors. In order to track the absence of entities, a new “negative” entity is
added for each original one. In any meaningful state W = D ∪ C there will always be
either one between a and ā, but never both. As a consequence, for any entity a ∈ SC ,
we must assume that the context will provide either a or ā. Define S := S] S̄ and
S̄ := {ā|a ∈ S}. A subscript D or C will be used to differentiate between entities related
to reaction products and related to the context.
Definition (State consistency). A set W ⊆ S is non-contradictory if for all entities
a ∈ S it holds that {a, ā} * W. A non-contradictory state W ⊆ S is consistent if, for
any entity a ∈ S, either a ∈ W or ā ∈ W holds.
Definition (Positive RS). A Positive RS is a Reaction System A+ = (S, A) that satisfies
the following conditions:

1. Each reaction r in A is positive, i.e., r = (R, ∅,P) for some non-contradictory sets
R and P.

2. Consistency preservation: for any consistent state W, the result set resA+(W)
must be consistent.

If one assumes that the initial state D0 ⊆ SD is a non-contradictory set and that the
sets C0, . . . ,Cn ⊆ SC provided by the context are non-contradictory sets, the second
condition of 2 guarantees that all result states traversed by the computation will be
consistent as well.

2.3.1 From RSs to Positive RSs

For each standard RS A = (S,A) it is possible to construct a Positive RS A+ = (S, A+)
that exactly mimic the behavior of A. The reactions in A+ can be split in two categories:
A+

pos that simply embeds the original reactions A and A+
neg whose reactions serve for

negative entities bookkeeping.

7

For each reaction (R, I, P) ∈ A there will be one positive reaction (R∪ Ī , P) ∈ A+
pos.

Extra reactions are needed to track the absence of the products of the original reactions.
They will be produced whenever no reaction in A that produces a is enabled. For this
purpose, assume to collect all reactions in A that are capable of producing a: to ensure
that none of them are enabled, we must make sure that, for each one, at least one
reactant is absent or at least one inhibitor is present.
Definition (Prohibiting set). Let A = (S,A) be RS and a ∈ SD one of its entities. A
non-contradictory set T ⊆ S is a prohibiting set for a if for any reaction (R, I, P ∪a) ∈ A
we have that T ∩ (I ∪ R̄) 6= ∅. Denote the set of prohibiting sets for a with ProhA(a).
Definition (Encoding RSs into PRSs). Let A = (S,A) be a RS, its encoding into a
Positive RS is obtained by considering A+ := (S, A+) whose set of positive reactions
A+ := A+

pos ∪A+
neg is defined as follows:

A+
pos :=

{
(R ∪ Ī , P)|(R, I, P) ∈ A

}
A+

neg :=
⋃
a∈S

{(T, ā)|T ∈ ProhA(a)}

The resulting A+ satisfies the two conditions from Definition and thus is a Positive
RS.

The states of the new Positive RS are in bijection with the states of the old system
and can be proven that the two systems compute exactly the same states at each step.

2.3.2 Minimization

The procedure of converting a RS into a Positive RS can produce a system with many
redundant reactions. The following rules are used to minimize the reactions after they
are computed:

1. The reaction r1 = (R1, I1, P) can be omitted if a reaction r2 = (R2, I2, P) such
that R2 ⊆ R1 and I2 ⊆ I1 is present.

2. If both reactions r1 = (R ∪ {a}, I, P) and r2 = (R, I ∪ {a}, P) are present, they
can be replaced by r = (R, I, P).

In general one can apply a minimization process to both standard and Positive RS
and derive a simplified version of the original system with fewer reactions.

2.3.3 Slicing

In the context of programming, dynamic slicing is a technique that helps a user to debug
a program by simplifying a partial execution trace, by pruning parts which are irrelevant
and highlighting parts of the program wich are responsible for the production of an error.
In the case of RSs, the goal is to highlight how a subset of the elements in a state were
originated. This include the reactants and reactions that were responsible for producing
them.

8

Algorithm 1 Trace Slicer
Input:- a reaction system A

- a trace T = D0
C0

N1−−→ · · · Nm−−→ Dm
Cm

- a marking Dσ ⊆ Dm

Output: a sliced trace D′
0

C′
0

N ′
1−−→ · · · N ′

m−−→ Dσ
Cm

1: D′
m := Dσ

2: for i = {m,m− 1, . . . , 1} do
3: D′

i−1 := ∅
4: C ′

i−1 := ∅
5: N ′

i := ∅
6: for rj = (Rj , Ij , Pj) ∈ Ni such that (D′

i ∩ Pj 6= ∅) do
7: N ′

i := N ′
i ∪ {j}

8: C ′
i−1 := C ′

i−1 ∪ (Rj ∩ SC)
9: D′

i−1 := D′
i−1 ∪ (Rj ∩ SD)

10: end for
11: end for

Starting from the pair Dσ
Cm

denoting the user’s marking and proceeding backwards,
apply iteratively a slicing step that deletes from the partial computation all information
not related to Dσ. The sliced trace will contain only the subsets of entities and reactions
which are necessary for deriving the marked entities.

Since the algorithm 1 can only capture dependencies related to reactants, but ignores
the ones related to inhibitors, converting the RS into a Positive RS makes possible the
tracking of the absence of entities via negative entities. Minimizing the Positive RS
reduces the noise in the output and is thus desirable.

2.4 Bisimulation
Given two distinct RS processes, the natural question to ask would be if their simulation
is the same, or at least behaves the same. Bisimulation is one such relation, defined in
terms of coinductive games, of fixed point theory and of logic. Bisimulation equivalence
aims to identify transitions systems with the same branching structure, and wich thus
can simulate each other in a stepwise manner.
Definition (Transition System[2]). A transition system TS is a tuple (S,Act,→, I, AP,L)
where:

• S is a set of states,
• Act is a set of actions,
• →⊆ S ×Act× S is a transition relation,
• I ⊆ S is a set of initial states,
• AP is a set of atomic propositions,

9

• L : S → 2AP is a labeling function.

TS is called finite if S, Act, and AP are finite.
The intuitive behavior of a transition system can be described as follows: the tran-

sition system start in some initial state s0 ∈ I and evolves according to the transition
relation →. Given s as the current state, then a transition s

α−→ s′ is selected nonde-
terministically and taken, meaning the action α is performed and the transition system
evolves from state s into the state s′. The labeling function L relates a set L(s) ∈ 2AP

of atomic propositions to any state s. It intuitively stands for exactly those aotmic
propositions α ∈ AP which are satisfied by state s.
Definition (Bisimulation Equivalence[2]). Let TSi = (Si, Acti,→i, Ii, AP, Li), i ∈ {1, 2},
be transition systems over AP. A bisimulation for (TS1, TS2) is a binary relation R ⊆
S1 × S2 such that:

• ∀s1 ∈ I1(∃s2 ∈ I2.(s1, s2) ∈ R) and ∀s2 ∈ I2(∃s1 ∈ I1.(s1, s2) ∈ R)

• for all (s1, s2) ∈ R it holds:

1. L1(s1) = L2(s2)

2. if s′1 ∈ Post(s1) then there exists s′2 ∈ Post(s2) with (s′1, s
′
2) ∈ R

3. if s′2 ∈ Post(s2) then there exists s′1 ∈ Post(s1) with (s′1, s
′
2) ∈ R.

TS1 and TS2 are bisimulation-equivalent (bisimilar), denoted TS1 TS2, if there exists
a bisimulation R for (TS1, TS2).

Where Post(s) is the set of successors of s defined as

Post(s) :=
⋃

α∈Act

{
s′ ∈ S

∣∣∣s α−→ s′
}

An intuitive way to see bisimulation is by framing it as a game between an attacker
and a defender: the attacker wants to disprove the equivalence between two processes s
and t, the latter tries to show that s and t are equivalent. Each turn the attacker picks
one process and one transition s

α−→ s′, the defender must reply by picking one transition
t

α−→ t′ of the other process with exactly the same label α. The game ends either with
the attacker winning by finding a transition with no equivalent one in the other process
or with the attacker losing by having no transitions available.

2.4.1 Algorithms for evaluating bisimulation

Follows a definition of a partition, used extensively in the following algorithms:
Definition (Partition). A partition of S is a set {B0, . . . , Bk}, k ≥ 0 of non-empty
subsets of S such that:

• Bi ∩Bj = ∅, for all 0 ≤ i < j ≤ k,
• S = B0 ∪B1 ∪ . . . ∪Bk.

10

An equivalence relation over the set of states S can be represented as a partition of
the states. The sets Bi are called blocks.

Let π and π′ be two partitions of S. π′ is a refinement of π if for each block B′ ∈ π′

there exists some block B ∈ π such that B′ ⊆ B.

The algorithm of Kanellakis and Smolka[1] Given a transition system T =
(S,Act,→, I, AP,L), let π = {B0, . . . , Bk}, k ≥ 0 be a partition of the set of states
S. The algorithm due to Kanellakis and Smolka is based on the notion of splitter.
Definition (Splitter). A splitter for a block Bi ∈ π is a block Bj ∈ π such that, for some
action α ∈ Act, some states in Bi have α-labeled transitions whose target is a state in
Bj and others do not.

Intuitively, thinking of blocks as representing approximations of equivalence classes
of processes with respect to strong bisimilarity, the existence of a splitter Bj for a block
Bi in the current partition indicates that we have a reason for distinguishing two groups
of sets of states in Bi, namely those that afford an α-labeled transition leading to a state
in Bj and those that do not. Therefore Bi can be split by Bj with respect to action α
into the two new blocks:

B1
i =

{
s
∣∣∣s ∈ Bi and s

α−→ s′ for some s′ ∈ Bj

}
and

B2
i = Bi \B1

i .

This splitting results in the new partition:

π′ =
{
Bo, . . . , Bi−1, B

1
i , B

2
i , Bi+1, . . . , Bk

}
which is a refinement of π.

The algorithm of Kanellakis and Smolka iterate the splitting of some blocks Bi by
some blocks Bj with respect to some action α until no further refinement of the current
partition is possible. The resulting partition coincides with bisimilarity over the input
labeled transition systems when the initial partition πinitial is chosen to be equal to S
and is called the coarsest stable partition.
Definition (Stable Partition and Coarsest Stable Partition). A set B ⊆ S is stable with
respect to a set I ⊆ S if either B ⊆ pre(I) or B ∩ pre(I) = ∅.

A partition π is stable with respect to a set I if each block B ∈ π is stable with
respect to I.

A partition π is stable with respect to a partition π′ if π is stable with respect to
each block B′ ∈ π′. A partition π is stable if it is stable with respect to itself.

The coarsest stable refinement of a partition πinitial is a stable partition that is refined
by any other stable partition that refines πinitial.

Note that B ⊆ S is stable with respect to a block C ⊆ S if and only if C is not a
splitter for B.

Follows the pseudocode for the algorithm of Kanellakis and Smolka[1].
The algorithm uses the function split(B,α, π) which given a partition π, a block

B ∈ π and an action α, splits B with respect to each block in π and action α.

11

1: π := S
2: changed := true
3: while changed do
4: changed := false
5: for each block B ∈ π do
6: for each action α do
7: sort the α-labeled transitions from states in B
8: if split(B,α, π) = {B1, B2} 6= {B} then
9: refine π by replacing B with B1 and B2

10: changed := true
11: end if
12: end for
13: end for
14: end while

1: procedure split(B,α, π)
2: choose some state s ∈ B
3: B1, B2 := ∅
4: for each state t ∈ B do
5: if s and t can reach the same set of blocks in π via α-labeled transitions then
6: B1 := B1 ∪ {t}
7: else
8: B2 := B2 ∪ {t}
9: end if

10: end for
11: if B2 is empty then
12: return {B1}
13: else
14: return {B1, B2}
15: end if
16: end procedure

12

Theorem (Kanellakis and Smolka). When applied to a finite labeled transition system
with n states and m transitions, the algorithm of Kanellakis and Smolka computes the
partition corresponding to bisimilarity in time O(n ·m).

Proof of correctness relies on the fact that when changed is false, there is no splitter
for any of the blocks in π. Moreover, if we denote by πi the partition after the i-iteration
of the main loop, we have ⊆ i ⊆ πi. Thus the algorithm terminates with π = .

The algorithm of Paige and Tarjan[4] Performance of the algorithm by Kanellakis
and Smolka can be significantly improved through the use of more complex data struc-
tures. Paige and Tarjan proposed an algorithm that utilizes information about previous
splits to make future splits more efficient. A simple algorithm over a one symbol al-
phabet is presented, followed by an algorithm that converts any LTS into a one symbol
LTS.

The Paige-Tarjan algorithm is based on the following observation. Let B be stable
with respect to S, and let S be partitioned into S1 and S2. Then, if B ∩ S = ∅, B is
stable with respect to both S1 and S2. Otherwise B can be split into three blocks:

B1 = B \ pre(S2),

B12 = B ∩ pre(S1) ∩ pre(S2),

B2 = B \ pre(S1).

The improvement in complexity that the Paige-Tarjan algorithm provides over the al-
gorithm by Kanellakis and Smolka stems from the fact that three-way splitting can be
performed in time proportional to the size of the smaller of the two blocks S1, S2.

Two types of splitter can be identified: simple and compound splitters.
simple splitters are used to split blocks in π into two disjoint subsets as done in the

algorithm of Kanellakis and Smolka.
Definition (Simple splitting). Let π be a partition and let B be a set of states in S.
Define split(B, π) as the following procedure:

For each block B′ ∈ π such that B′ is not stable with respect to B, replace B′ by
the blocks

B′
1 = B′ ∩ pre(B) and

B′
2 = B′ \ pre(B).

B is a splitter for π when split(B, π) 6= π, in which case π is refined with respect
to B and split(B, π) is the partition that results from that refinement.

Some useful properties follow:
Lemma. [1]

1. Stability is preserved by refinement: if π refines π′ and π′ is stable with respect to
a set of states I, then so is π.

13

2. Stability is preserved by union: if π is stable with respect to sets I1 and I2, then
π is also stable with respect to S1 ∪ S2.

3. Assume that B ⊆ S. Let π1 and π2 be two partitions of S such that π1 refines π2.
Then split(B, π1) refines split(B, π2).

4. Assume that B,B′ ⊆ S. Let π be a partition of S. Then

split(B, split(B′, π)) = split(B′, split(B, π))

In order to implement the algorithm efficiently, it is useful to reduce the problem
to that of considering a labeled transition system without deadlocked states, meaning
without states with no outgoing edge. This can be done easily by preprocessing the
initial partition πintial by splitting each block B ∈ πinitial into:

B1 = B ∩ pre(S) and
B2 = B \ pre(S).

B2 will never be split again by the refinement algorithm. Therefore run the refinement
algorithm starting from the partition π′

initial = {B1|B ∈ πinitial}.
In order to find splitters efficiently, some additional information is kept. The algo-

rithm maintains another partition X such that

• π is a refinement of X and
• π is stable with respect to X.

Initially X = {S}. Follows a general outline of the algorithm.

1: while π 6= X do
2: Find a block I ∈ X \ π
3: Find a block B ∈ π such that B ⊆ S and |B| ≤ |I|

2
4: Replace I withing X with the two sets B and I \B
5: Replace π with split(I \B, split(B, π)).
6: end while

The efficiency of the above algorithm relies on the heuristic for the choice of the block
B at line 3 and on the use of three-way splitting to implement line 5 efficiently.

Suppose that we have a partition π that is stable with respect to a set of states I that
is a union of some of the blocks in π. Assume also that π is refined first with respect to
a non-empty set B ⊂ I and then with respect to I \B. Two properties can be observed:

• Refining π with respect to B splits a block D ∈ π into two blocks D1 = D∩pre(B)
and D2 = D \ pre(B) if, and only if, D is not stable with respect to B.

14

D

D1 = D ∩ pre(B)

D2 = D \ pre(B)

D11 = D ∩ pre(B) ∩ pre(I \B)

D12 = D \ pre(I \B)

Figure 2.2: Three-way splitting of a block.

• Refining further split(B, π) with respect to I \ B splits the block D1 into two
blocks D11 = D1 ∩ pre(S \B) and D12 = D1 \D11 if, and only if, D1 is not stable
with respect to S \B.

A block I is simple if it is also a block of π and is compound otherwise. Note
that a compound block I contains at least two blocks of π. A compound block can be
partitioned into B and I \ B in such a way that both of the properties 2.4.1 hold. If π
is stable with respect to I, either D ⊆ pre(I) or D ∩ pre(I) = ∅. If D is not stable with
respect to B, it holds that D * pre(B) and D ∩ pre(B) 6= ∅. Therefore, D ⊆ pre(I).
One can thus infer that D12 = D1 \D11 = D1∩(pre(B)\pre(I \B)), which is the crucial
observation underlying the implementation of the algorithm.

Depicted in 2.2 the result of a three-way split of a block D.
The time performance of the algorithm by Paige and Tarjan relies on the following

observations:

• Each state in the input labeled transition system is in at most log(n+1) blocks B
used as refining sets, since each is at most half the size of the previous one.

• A refinement step with respect to a block B, as shown by Paige and Tarjan[5], can
be implemented in time O

(
|B|+

∑
b∈B|pre(b)|

)
by means of use of appropriate

data structures.

The algorithm has thus an O(m logn) time bound.

log-space reduction of bisimilarity checking over a one-letter action set
In order to apply the previous algorithm to a LTS with arbitrary number of labels, there
needs to be first a reduction to an equivalent LTS with only one symbol as label. Assume
two given processes P and Q over an LTS T with the set of actions {α1, α2, . . . , αl}. Let
T ′ be the modified LTS which contains all the process of T together with some additional
ones defined in the following way: for every transition P1

αi−→ P2 in T we add into T ′

15

• two transitions P1 → P(P1,αi,P2) and P(P1,αi,P2) → P2 where P(P1,αi,P2) is a newly
added state, and

• a newly added path of length i from P(P1,αi,P2).

Finally for every process P in T we create in T ′ a newly added path of length l + 1
starting from P . A small optimization can be added by sorting the frequency of labels
and thus creating the lowest possible number of auxiliary nodes for each label.

P1 P2

α1

P3

α2
α2 P1 P2

P3

Figure 2.3: Example of reduction

16

Chapter 3

Design

Two sub-problems where identified during the design: simulating the behavior of Re-
action Systems, RS processes and other operations on LTS, and interacting with the
user in a intuitive manner. The programming language chosen was Rust, since it
offered good performance and ease of development. Two Git repositories are pro-
vided: github.com/elvisrossi/ReactionSystems and github.com/elvisrossi/ReactionSys-
temsGUI.

The ReactionSystems project follows a modular architecture and clear design prin-
ciples to mirror the theoretical model; it implements procedures over RS as pure rust
functions and is structured as a library. It also provides a crude Command Line Inter-
face for some of the functions provided. The code is organized in workspaces in order to
reduce compilation time and aid code reuse. In the second Git repository a native and
web application is implemented in Rust and in webassembly generated from Rust code.
The web application consists of only static files and as such may be served by a simple
HTTP server.

3.1 ReactionSystems
The design is structured to faithfully implement the reaction system formalism while re-
maining flexible. It provides a foundation that matches theoretical definitions (ensuring
correctness) and supports further expansion (such as adding optimization, visualization,
or integration with other tools) by maintaining a clean separation between the model
representation and the execution logic. Since the language Rust supports object-oriented
programming via traits, but lacks generic inheritance, the design of the basic building
blocks of RSs are designed around this limitation. Usually a basic trait is provided
for each of them and an extension of the trait is implemented for all structures that
implement the basic trait.

Since it is not practical for a user to specify the structures in Rust, a syntax for
the basic structures has been specified. This syntax tries to remain as much as possible
compatible with ones from previous software. To develop the parser, LALRPOP was
chosen as the parser generator framework. LALRPOP code is transpiled to Rust code

17

https://rust-lang.org/
https://github.com/elvisrossi/ReactionSystems
https://github.com/elvisrossi/ReactionSystemsGUI
https://github.com/elvisrossi/ReactionSystemsGUI
https://webassembly.org/
https://github.com/lalrpop/lalrpop

via macros and then compiled to machine code.

Set Reaction Choices

Label Environment Process

SystemGraph

Figure 3.1: Basic structures and relationships between them

3.1.1 Entities and Translator

Entities are the most basic data structure that a RS need to keep track of. They don’t
have a specified interface and are instead treated only in sets.

Positive elements are also defined and have a state, either Positive or Negative.
Since internally entities are represented as integers, a structure that keeps track

of assignment between strings and integer is provided (Translator). This poses a
problem with the default methods for formatting available in Rust, since for the trait
Display and Debug only the structure itself can be used to generate the string. The
trait PrintableWithTranslator and the structure Formatter solve this issue by incor-
porating the Translator into the struct. Display is then implemented on the generic
structure Translator.

3.1.2 Set

The common procedures required for all sets are:

• is_subset(a, b) → bool, which should return true if a ⊆ b;
• is_disjoint(a, b) → bool, which should return true if a ∩ b = ∅;
• union(a, b) → set, which should return a ∪ b;
• push(a, b), which should replace a with a ∪ b in place;
• intersection(a, b) → set, which should return a ∩ b;
• subtraction(a, b) → set, which should return a \ b;
• len(a) → int, which should return the number of elements in a;
• is_empty(a) → bool, which should return true if a has no elements, false other-

wise;
• contains(a, e : entity) → bool, which should return e ∈ a;
• add(a, e : element), which should add the element e to a in place.

18

Some other procedures are required for ease of use:

• extend(a, b?), which should extend a with a ∪ b if b is a non-null value, and leave
a unchanged otherwise, similar to push (3.1.2).

Two other procedures are implemented for all structs that implement the BasicSet
trait:

• iter(a) → iterable, which returns an iterator over the elements of the set a;
• split(a, trace : [set]) → ([set], [set])?, which returns the prefix and the loop

part of a trace.

Both normal sets and positive sets satisfy this interface, but have additional specific
functions for converting between the two.

The syntax for sets is:

Set ::= {S}
| {}

S ::= s , S
| s

Where
s is a string

Syntax 3.1: Syntax for Set

PositiveSet ::= {S}
| {}

S ::= state s , S
| state s

state ::= +
| -

Where
s is a string

Syntax 3.2: Syntax for Positive Set

3.1.3 Reaction

The methods required for all reactions are:

• enabled(r, state : set) → bool, which returns true if the reaction is enabled given
the entities supplied by state;

• compute_step(r, state : set) → set?, which returns the products of the reaction
if it is enabled by state.

All reactions that satisfy the basic trait automatically implement the following meth-
ods:

• find_loop(rs : [reaction], entities : set, q : set) → ([set], [set]), which
finds a loop and returns the sets that make up the prefix and the loop separately;

• find_only_loop(rs : [reaction], entities : set, q : set) → [set], which finds a
loop and returns the sets that form it;

• find_prefix_len_loop(rs : [reaction], entities : set, q : set) → (integer, [set]),
which finds a loop and returns the length of the prefix and the sequence of sets
that compose the loop;

19

Reaction ::= [s, s, s]
| [r: s, i: s, p: s]

Where
s is a set, see 3.1

Syntax 3.3: Syntax for Reaction

PositiveReaction ::= [s, s, s]
| [r: s, i: s, p: s]

Where
s is a positive set, see 3.2

Syntax 3.4: Syntax for Positive Reaction

3.1.4 Process

Process structures mirror the structure of RS processes as described in Section 2.2. Since
there is not much behavior that is shared between implementations and since usually
they are used with pattern matching, the trait that describe a basic process is very
simple.

• concat(a, b) → process, which returns a new process a|b flattened with regards
to parallel composition;

• all_elements(a) → set, which returns all the entities used in the process;
• filter_delta(a, id : entity) → set?, which returns the first rule X = Q.rec(X)

for any symbol X.

20

Process ::= [P]
P ::= C,P

| C

C ::= (C)
| nill
| s.C
| C+C
| ?r?.C
| <i,C>.C
| x

Where
s is a set,

see 3.1
r is a reaction,

see 3.3
i ∈ N
x is a variable name

Syntax 3.5: Syntax for Process

PositiveP ::= [P]
P ::= C,P

| C

C ::= (C)
| nill
| ps.C
| C+C
| ?pr?.C
| <i,C>.C
| x

Where
ps is a positive set,

see 3.2
pr is a positive reaction,

see 3.4
i ∈ N
x is a variable name

Syntax 3.6: Syntax for Positive Process

3.1.5 Choices

Since one RS process may have more than one possible next system when evaluating,
there is a need to express all possible choices for next states. The structure choices
represents all those possible continuations, associating a set with a process. The set
signifies all the entities that are provided by the context by choosing that context.
One particular operation called shuffle is needed: given two choices structures c1
and c2 where ci : set ⇀ process, i ∈ {1, 2}, it generates a new choices structure c′

such that ∀s1 ∈ domain(c1).(∀s2 ∈ domain(c2).domain(c′) 3 (s1 ∪ s2) ∧ c′(s1 ∪ s2) =
concat(c1(s1), c2(s2))). Intuitively it is all the possible combinations of two parallel
processes.

3.1.6 Environment

An environment can be thought as an association between variable names and processes.
The basic interface requires the following methods:

• get(a, k : entity) → process, which returns the process associated with the
variable k;

• all_elements(a) → set, which returns all the entities used in any of the processes;
• unfold(a, context : process, s : set) → choices?, which returns the list of choices

for the context, given the process definitions environment and is used to generate
the next systems with the SOS rules.

21

Some methods are automatically implemented for all BasicEnvironment: lollipops_decomposed,
lollipops_prefix_len_loop_decomposed, lollipops_only_loop_decomposed, lollipops_decomposed_named,
lollipops_prefix_len_loop_decomposed_named, and lollipops_only_loop_decomposed_named.
They all try to find a loop and return some information about the found loop. The
_named variants require a variable symbol for which in the environment there is an
association to a process with the form X = Q.rec(X), where Q is a set.

Environment ::= [E]
E ::= x = c,E

| x = c

Where
c is a process, see 3.5
x is a variable name

Syntax 3.7: Syntax for Environment

PositiveEnvironment ::= [E]
E ::= x = pc,E

| x = pc

Where
pc is a positive process, see 3.6
x is a variable name

Syntax 3.8: Syntax for Positive Environment

3.1.7 System

The basic interface for systems is only the following methods:

• to_transitions_iterator(sys) → iterator over (label, system)
• to_slicing_iterator(sys) → iterator over (label, system)
• context_elements(sys) → set
• products_elements(sys) → set

The method to_transitions_iterator should return an iterator over all the possi-
ble evaluations of the system. Likewise to_slicing_iterator should return an iterator
over the same outgoing edges, but with information that support the creation of a trace
to be used for slicing.

The two methods context_elements and products_elements should return the set
of entities that are related to the context and the one related to the reactions. Since it
may be a computationally expensive calculation, the result is cached in the structures.
Since there may be errors when deciding what constitutes an element belonging to the
context, methods are also present to override the default values.

Other methods are implemented for all structures that satisfy the previous interface:

22

• unfold(sys) → choices?, which, by calling the same method of the environment,
returns the list of choices for the context;

• run(sys) → [system]?, which computes the sequence of systems for the leftmost
execution;

• digraph(sys) → graph?, which computes the graph generated by the execution of
the system;

• target(sys) → (integer, set)?, which returns the state in one of the terminal
states and the number of steps to arrive at the last state;

• slice_trace(sys) → trace?, which generates, similarly to run, a trace appropri-
ate to run slicing calculations over;

• lollipops(sys) → [([set], [set])], similar to the method lollipops_decomposed
provided by environment.

System ::= Environment:e
Initial Entities:s
Context:c
Reactions: (R)

R ::= r;R
| ε

Where
e is an environment, see 3.7
s is a set, see 3.1
c is a Process, see 3.5
r is a reaction, see 3.3
ε is the empty string

Syntax 3.9: Syntax for System

3.1.8 Label

The label structure holds the information about how entities are used in the production
of a system and are the labels on the edges of the graphs. Since the only use is to hold
data, no meaningful method is required.

23

Label ::= [Entities:s,
Context:s,
Reactants:s,
ReactantsAbsent:s,
Inhibitors:s,
InhibitorsPresent:s,
Products:s]

Where
s is a set, see 3.1

Syntax 3.10: Syntax for Label

Label ::= [Entities:ps,
Context:ps,
Reactants:ps,
ReactantsAbsent:ps,
Inhibitors:ps,
InhibitorsPresent:ps,
Products:ps]

Where
ps is a positive set, see 3.2

Syntax 3.11: Syntax for Positive Environment

3.1.9 Graph

The project uses petgraph as graph data structure library. petgraph provides several
graph types, but the only one used is Graph, since it provided the best performance
during testing. The library provides methods for converting the graph structures into
Dot Language and GraphML File Format. The Dot methods where found to be not
powerful enough and where partially rewritten in the file dot.rs.

Custom formatting of the graphs was a key requirement, so domain specific languages
are provided to customize the appearance of the generated formats. Four structures are
provided:

• NodeDisplay, to specify the text displayed on each node;
• EdgeDisplay, to specify the text displayed on each edge;
• NodeColor, to specify the color of each node;
• EdgeColor, to specify the color of each edge.

Follows the BNF for each of the languages:

24

https://github.com/petgraph/petgraph
https://graphviz.org/doc/info/lang.html
http://graphml.graphdrawing.org/
https://github.com/elvisrossi/ReactionSystems/blob/master/rsprocess/src/dot.rs

NodeDisplay ::= E
| E "s" NodeDisplay

E ::= Hide
| Entities
| MaskEntities S
| ExcludeEntities S
| Context
| UncommonEntities
| MaskUncommonEntities S

Where
S is a sets of entities
s is a possibly empty string

Syntax 3.12: Syntax for NodeDisplay

Hide ignores the content of the node and prints the empty string, Entities prints
the list of entities currently available in the system, MaskEntities S prints the list
of entities masked by a specified set S, ExcludeEntities S prints the list of entities
except for the entities specified by the set S, Context prints the context of the system,
UncommonEntities prints only the entities that are not shared between all the nodes
in the graph, MaskUncommonEntities S prints the entities not shared between all the
nodes in the graph and masked by a specified set S.

25

EdgeDisplay ::= E
| E "s" EdgeDisplay

E ::= Hide
| Products
| MaskProducts S
| UncommonProducts
| UncommonMaskProducts S
| Entities
| MaskEntities S
| UncommonEntities
| UncommonMaskEntities S
| Context
| MaskContext S
| UncommonContext
| UncommonMaskContext S
| Union
| MaskUnion S
| UncommonUnion
| UncommonMaskUnion S
| Difference
| MaskDifference S
| UncommonDifference
| UncommonMaskDifference S
| EntitiesDeleted
| MaskEntitiesDeleted S
| UncommonEntitiesDeleted
| UncommonMaskEntitiesDeleted S
| EntitiesAdded
| MaskEntitiesAdded S
| UncommonEntitiesAdded
| UncommonMaskEntitiesAdded S

Where
S is a sets of entities
s is a possibly empty string

Syntax 3.13: Syntax for EdgeDisplay

Four version of each base option is available: normal, Mask which masks the normal
set of entities with a specified set, Uncommon which considers only the entities that are
not shared between all edges of the graph, and UncommonMask which combines the two
functionalities. The base options return the corresponding entities available in the label.

26

NodeColor ::= !" C "
| E || NodeColor

E ::= Entities op S ?"C"
| Context.Nill ?"C"
| Context.RecursiveIdentifier (x)?"C"
| Context.EntitySet op S ?"C"
| Context.NonDeterministicChoice ?"C"
| Context.Summation ?"C"
| Context.WaitEntity ?"C"

op ::= == or =
| < or ⊂
| <= or ⊆
| > or ⊃
| >= or ⊇

Where
C is a string that specifies the color

of the node
S is a sets of entities
x is a variable

Syntax 3.14: Syntax for NodeColor

The NodeColor structure assigns the first correct color to the node. The structure
can be thought of as a list of pairs; each pair has an entry that evaluated returns true
or false, and an entry that holds the desired color of the node. To find the correct color,
the list is scanned until the first pair that returns true and the color is assigned. If no
pair returns true, a default value is assigned, specified after !. The possible functions
expressible by the grammar are the ones expressed by E and query either the entities
available or the current context.

27

EdgeColor ::= !" C "
| E || EdgeColor

E ::= Entities op S ?"C"
| Context op S ?"C"
| T op S ?"C"
| Reactants op S ?"C"
| AbsentReactants op S ?"C"
| Inhibitors op S ?"C"
| PresentInhibitors op S ?"C"
| Products op S ?"C"

op ::= == or =
| < or ⊂
| <= or ⊆
| > or ⊃
| >= or ⊇

Where
C is a string that specifies the color

of the node
S is a sets of entities
x is a variable

Syntax 3.15: Syntax for EdgeColor

EdgeColor behaves in a similar manner as NodeColor, except the base structure is
a Label, so every field is a Set.

3.1.10 Slicing Trace

Only one structure for slicing trace is provided, but is made to work with both RS and
Positive RS with generics. The only method they have is slice(trace,marking : set) →
trace? which returns, if successful, a new sliced trace.

3.1.11 Bisimilarity and Bisimulation

In the workspace bisimilarity the algorithms by Kanellakis and Smolka, and Paige
and Tarjan are implemented over generic graphs. Instead of an implementation over
graphs with generic parameters, the input have to implement generic traits from the
petgraph library, making it possible to use with different types of graph, for example
spare graphs or matrix graphs.

One key feature was the ability to control via a domain specific language the labels
on the edges of the graphs. The developed language is able to also specify values over
nodes such that nodes with equal value may be collapsed into one node with outgoing
and incoming edges inherited from the original nodes. The code for the typechecking
and execution is available in the library assert.

28

The language has way to define subroutines or functions, has no while loop and
limited for loop construction, so that the execution always terminates.

Assert ::= label{Tree} label is replaced by other
strings to differentiate
languages

Tree ::= Tree;Tree
| if E then {Tree};
| if E then {Tree}

else {Tree};
| let x = E;
| let x.Qualifier = E;
| return E;
| for x in Range {Tree};

E ::= unaryP(E)
| E.unaryS
| (E binary E)
| binaryP(E,E)
| Term

Term ::= true
| false
| x
| i
| l
| set
| 's' element
| "s" string
| (E)

Range ::= {E} iterate over set
| {E..E} iterate over integer range

Where
S is a sets of entities, see 3.1
i ∈ Z
x is a variable name
l is a label, see 3.1
set is a set, see 3.1
s is a string

Syntax 3.16: Syntax for Assert

Continues on the next page.

29

unaryP ::= empty
| length
| tostr
| toel string to element
| Entities
| Context
| Reactants
| ReactantsAbsent
| Inhibitors
| InhibitorsPresent
| Products
| AvailableEntities
| AllReactants
| AllInhibitors
| SystemEntities
| SystemContext
| source source of edge
| target target of edge
| neightbours node’s neighbours
| system node’s system

binary ::= && logical and, set intersection
| || logical or, set union
| ^^ logical xor, set xor
| < less, set inclusion
| <= less equal, set inclusion or equal
| > greater, reverse set inclusion
| >= greater equal, reverse set inclusion or equal
| ==
| !=
| +
| *
| ^
| / quotient
| % reminder
| :: concatenation

binaryP ::= substr logical and
| min logical or
| max logical xor
| commonsubstr less or set inclusion

unaryS ::= Entities
| length
| tostr
| toel

Syntax 3.16: Syntax for Assert (Continued)
30

The template language requires two structures to function relating to the input of
the language: a type structure and a value structure. The trait SpecialVariables
holds all the necessary functions that need to be implemented for the special variables
to function. Finally the generic language can have the two functions typecheck and
execute implemented.

The language is very limited and is only designed for simple algorithms since there
is no scoping. Typechecking consists in only asserting acceptable types for unary and
binary functions, range declaration and for all return statements to return the same
type.

A version for Positive RS is also provided and reflects the previous grammar with
basic types replaced with their positive versions.

3.1.12 Grammar and Separated Grammar

Two workspaces are provided for parsing the structures above. Grammar creates only
one endpoint that parses a system and a list of instructions. Those instructions are
then executed via the library execution. A simple CLI has been implemented in the
workspace analysis, with proper error formatting for LALRPOP errors.

3.1.13 Experiments and Frequency

An experiment is a list of weights and a list of sets of same length. The sets are used as
entities given in addition to the context entities when computing the RS. The resulting
trace is then synthesized into relative frequencies. The methods offered by Frequency
and PositiveFrequency are:

• naive_frequency(sys : system) → frequency?, which computes the relative fre-
quency of each entity in all traversed states, assuming the computation is finite;

• loop_frequency(sys : system, symbol : IdType) → frequency, which computes
the relative frequency of each entity in each state of the encountered loop, assuming
the system stabilizes in a loop;

• limit_frequency(experiment : [set], reactions : [reaction], entities : set) →
frequency?, which computes the relative frequency of each entity in the states of
the last loop by providing repeatedly the sets in the experiment until the system
stabilizes in a loop;

• fast_frequency(experiment : [set], reactions : [reaction], entities : set, weights :
[int]) → frequency?, which computes the weighted relative frequency of each en-
tity in any of the loops.

31

Experiment ::= Weights : W Sets : S

W ::= i, W
| ε

S ::= s, S
| ε

Where
s is a sets of entities, see 3.1
i ∈ Z

Syntax 3.17: Syntax for Experiment

3.2 ReactionSystemsGUI
During development of ReactionSystems, a need for a more intuitive interaction with
the structures presented itself. Since the all the operations on the types where already
limited and structured, a visual programming language was chosen as the best fit.

The library egui_node_graph2 was chosen since it offered customizability, perfor-
mance and ease of programming. The library unfortunately lacked compatibility with
the most recent version of egui, so it is included as a workspace and modified to fit
better the need of the project. This way a couple of bugs present in the original code
could be fixed.

egui_node_graph2 is based on the library egui, which is an immediate mode GUI. It
differentiate itself from retained mode GUIs by having all the elements specified at every
frame; this eases programming at the expense of performance. The trade-off is favorable
since most of the computation will be on the algorithms over RS and the number of
elements of the UI will remain small in most cases.

All the functions previously described are available as “nodes” in the GUI program.
Each takes one or more inputs, colored by type, and prevents wrong types from connect-
ing, reducing user error when connecting similarly colored types.

Since at every step all of the GUI is recalculated, a robust cache structure is needed.
The cache developed keeps track of the modified nodes and only recomputes if necessary,
exploiting the structure of the graph.

The library egui_node_graph2 was also chosen for its ability to create a web appli-
cation directly from Rust code. The web application is limited; there is no interaction
with the file system and no true multi-threading. These limitations are imposed by
WebAssembly itself, not by the transpilation from Rust.

The native application executes the expressed instructions in a separate thread and
returns the result to the GUI thread to be displayed. Thus the web application may
“freeze” and become unresponsive with long calculations.

Both native and web applications have the ability to save the current state and
resume. The saved state is stored in the browser cache in the web application and in
special directories in the native one:

32

https://github.com/trevyn/egui_node_graph2
https://github.com/emilk/egui

0 8 16 24 32 40 48 56 63

Version Number
State Length

Translator Length

Cache Length

 Size

State

Translator

Cache

Figure 3.2: Save file structure

• Linux: /home/UserName/.local/share/Reaction-Systems
• macOS: /Users/UserName/Library/Application Support/Reaction-Systems
• Windows: C:\Users\UserName\AppData\Roaming\Reaction-Systems\data

The native application also has the ability to save and load the state from a file. The
files have by default the extension “.ron”. The web version has no ability to interact
with the file system due to a limitation of webassembly.

The file structure can be seen in figure 3.2, where “state” refers to the state of the
GUI, “translator” refers to the Translator structure used to encode entities names into
fixed sized integers, and “cache” refers to the cache structure for the GUI. Version number
is a little-endian u64 that encodes the version number of the application; if different from
the version of the application, a warning will be issued, but the application will try and
load the state anyway. Each “length” field is a little-endian u64 and indicates the length
in bytes of the corresponding field.

The user can request the result of a computation by interacting with the button
“Set active” under most of the windows. A panel on the right of the screen appears
with the computed result. The nodes “Save string to file” and “Save SVG” instead have
a button “Write” that writes to file the result. The node “Read a file” has an extra
button “Update file” that reads again the file from disk since a filewatcher has not been
implemented.

Since the generated graphs were often times immediately converted to DOT files
and rendered to SVG, a native renderer is included that can create PNG images of the
supplied graph. This reduces greatly the time switching between software to achieve the
same result.

33

34

Chapter 4

Development

4.1 ReactionSystems

4.1.1 Entities and Translator

Entities are declared in the file element.rs and the Translator struct is implemented in
the file translator.rs.

Entities have type IdType and are represented as u32. Representing arbitrarily
named entities with integers has the immediate benefit of faster code execution, but need
additional support for the encoding and decoding. Also it does not permit easy merging
of different systems. This is because two elements with the same string might be assigned
to a different integer and would need to be re-encoded. The ReactionSystemsGUI solves
this problem by having only one Translator class for all entities and systems.

Positive RS have the property that if all the entities are declared in the initial state,
in all subsequent states the entities will all be defined either positive or negative. This
property can be exploited in the representation of a Positive RS, however the implemen-
tation disregards this fact and simply assigns either positive or negative to each positive
entity.

The struct Translator is formed by two maps, one from strings to IdType and the
inverse, and by a counter for the last used id. It is essential for this class to be serializable,
so that the state of ReactionSystemsGUI might save it when necessary. The struct is
also used to form the structure Formatter, which is used to format all structures that
implement PrintableWithTranslator.

For example the implementation of PrintableWithTranslator for Set is the follow-
ing:

1 impl PrintableWithTranslator for Set {
2 fn print(
3 &self,
4 f: &mut fmt::Formatter,
5 translator: &Translator,
6) -> fmt::Result {

35

https://github.com/elvisrossi/ReactionSystems/blob/master/rsprocess/src/element.rs
https://github.com/elvisrossi/ReactionSystems/blob/master/rsprocess/src/translator.rs

7 write!(f, "{{")?;
8 let mut it = self.iter().peekable();
9 while let Some(el) = it.next() {

10 if it.peek().is_none() {
11 write!(f, "{}", Formatter::from(translator, el))?;
12 } else {
13 write!(f, "{}, ", Formatter::from(translator, el))?;
14 }
15 }
16 write!(f, "}}")
17 }
18 }

The structure Translator is only borrowed because it is never modified when print-
ing, so only one is needed for all of the print. On lines 11 and 13 instead of directly
printing el, we first construct another Formatter struct and require only for that struct
to implement std::fmt::Display. This gives modularity and flexibility to the display
system.

4.1.2 Set

The structure set is a key component for all functions in the library. It is implemented
as a binary tree set. Binary trees were chosen instead of hash sets for various reasons:
binary trees support hashing of the whole tree, hash sets do not; the penalty for retrieval
of individual elements is offset by the performance gain for set operations like union or
intersection.

4.1.3 Tests

During the development of the library some tests were developed in order to test behavior
in the changing code. They can be run with cargo test. Test coverage is not high, but
is present in for pieces of code that might break more easily. Tests are usually present
in a separate file as the structure declaration and are named “*_test.rs”, so that they
might be easily recognized.

In addition to automated tests, some example inputs are provided in the folder
testing. The extension .system symbolizes system and associated instructions; the
extension .experiment symbolizes an experiment, see 3.1.13.

4.2 ReactionSystemsGUI

4.3 Validation

36

https://doc.rust-lang.org/std/collections/struct.BTreeSet.html
https://github.com/elvisrossi/ReactionSystems/tree/master/testing

Chapter 5

Conclusion

37

38

Chapter 6

Appendix

39

	Introduction
	Background
	Reaction Systems
	Example: A binary counter

	SOS rules for reaction systems
	Positive Reaction Systems
	From RSs to Positive RSs
	Minimization
	Slicing

	Bisimulation
	Algorithms for evaluating bisimulation

	Design
	ReactionSystems
	Entities and Translator
	Set
	Reaction
	Process
	Choices
	Environment
	System
	Label
	Graph
	Slicing Trace
	Bisimilarity and Bisimulation
	Grammar and Separated Grammar
	Experiments and Frequency

	ReactionSystemsGUI

	Development
	ReactionSystems
	Entities and Translator
	Set
	Tests

	ReactionSystemsGUI
	Validation

	Conclusion
	Appendix

