
Contents

1 Introduction 3
1.1 Software Design and Key Features . 3

2 Background 5
2.1 Reaction Systems . 5

2.1.1 Example: A binary counter . 7
2.1.2 Simple loops . 7

2.2 SOS rules for reaction systems . 8
2.3 Positive Reaction Systems . 10

2.3.1 From RSs to Positive RSs . 10
2.3.2 Minimization . 11
2.3.3 Slicing . 11

2.4 Bisimulation . 12
2.4.1 Algorithms for evaluating bisimulation 13

3 Design 21
3.1 ReactionSystems . 21

3.1.1 Entities and Translator . 22
3.1.2 Set . 22
3.1.3 Reaction . 23
3.1.4 Process . 24
3.1.5 Choices . 25
3.1.6 Environment . 25
3.1.7 System . 26
3.1.8 Label . 28
3.1.9 Graph . 29
3.1.10 Slicing Trace . 33
3.1.11 Bisimilarity and Bisimulation . 33
3.1.12 Grammar and Separated Grammar 36
3.1.13 Experiments and Frequency . 36
3.1.14 Instructions . 37

3.2 ReactionSystemsGUI . 39

1

4 Development 45
4.1 ReactionSystems . 45

4.1.1 Entities and Translator . 45
4.1.2 Set . 46
4.1.3 Reaction . 46
4.1.4 Process, Choices and Environment 46
4.1.5 System . 47
4.1.6 Label . 47
4.1.7 Graph . 48
4.1.8 Slicing Trace . 49
4.1.9 Bisimilarity and Bisimulation . 49
4.1.10 Assert . 49
4.1.11 Grammar . 50

4.2 ReactionSystemsGUI . 51

5 Testing and Validation 53
5.1 Tests . 53
5.2 Validation . 59

6 Conclusion 61
6.1 Summary of Contributions . 61

2

Chapter 1

Introduction

Reaction Systems (RSs) are a successful computational framework inspired by biological
system. The interaction between biochemical reactions and the functioning of single re-
actions are based on the mechanisms of facilitation and inhibition, which can be modeled
and analyzed using RS.

In this work new software for modeling, analyzing and designing Reaction Systems
is designed and developed, with focus on performance and user interface design.

A Reaction System consists of a set of entities and a set of reactions over them.
Each reaction produces some set of entities P (called products) if enabled, meaning if
a set R (called reactants) is wholly present and if a set I (called inhibitors) of entities
is completely absent. The use of inhibitors induces non-monotonic behaviors that are
difficult to analyze. Entities can also be provided by an external context sequence to
simulate in silico biological experiment, expanded by structural operational semantics
(SOS) rules to account for several biological experiments. In addition Positive RS, trace
slicing, graph generation, bisimulation and more is available through an intuitive visual
language with a graphical interface.

Despite the rich theoretical development of Reaction Systems, practical tools for
working with RS models have lagged behind. Numerous versions of Prolog and Python
programs have been developed[4], but have problems regarding performance and usabil-
ity. Future developments may be hindered by this lack of software by this technological
barrier.

This thesis aims to bridge the gab between the theoretical foundations of Reaction
Systems and their practical application. To achieve this a new software platform for
modeling, analyzing and designing Reaction Systems is proposed.

1.1 Software Design and Key Features
The core contribution here presented is a new software tool built from the ground up to
support Reaction Systems modeling and analysis. Equal emphasis has been placed on
performance and user experience. The software is implemented in Rust[27], a modern
systems programming language chosen for its efficiency and reliability. Rust’s strong per-

3

formance characteristics (memory safety, speed, and concurrency support) help ensure
that even larger Reaction System models can be analyzed quickly, while its emphasis on
code safety and clarity makes the tool more maintainable in the long term.

The platform provides two user interfaces to accommodate different user needs.
A command-line interface (CLI) is available for quick integration in already existing
pipelines. The CLI allows specification of Reaction Systems and instructions over them
and is easily expandable to meed the need of the programmer.

A graphical user interface (GUI) is also available both as standalone native applica-
tion and as a static web application running on WebAssembly[18]. The GUI lowers the
learning curve for new users: instead of writing code or scripts, one can construct reac-
tions, run simulations and view results through the same interface through interactive
diagrams and controls. By providing both CLI and graphical native/web interfaces, the
tool caters to a wide audience.

Key capabilities of the developed Reaction Systems software include:

• Graphical interface for modeling and simulation: An interactive GUI that allows
users to graphically define RS components and simulate their behavior.

• Trace slicing: tools for examining execution traces in detail. Trace slicing allows
a user to isolate and inspect specific segments of a reaction sequence, exploring
causality between produced elements or inhibited reactions.

• Bisimulation analysis: support for formal bisimulation analysis, which enables
comparing different Reaction Systems models for behavioral equivalence. The
methods are not restricted to just analyzing RS, but are available for any graph-
like structure.

• Conversion between Reaction Systems and Positive Reactions Systems: to bet-
ter explore traces and causality, a more suitable model is provided. Conversion
between systems is handled automatically and the dafaults can be fine tuned or
overridden.

Together, these features make the software a comprehensive environment for working
with Reaction Systems. The user can construct, simulate and analyze the results through
multiple lenses: from observing cyclic behaviors to checking formal equivalences and
visualizing interaction networks.

4

Chapter 2

Background

2.1 Reaction Systems
Reaction Systems are a qualitative model inspired by biochemical processes. The behav-
ior is described by reactions, each of them requiring some reactants R and requiring the
absence of inhibitors I to produce some product elements P . “Elements” and “entities”
will be used interchangeably to refer to elements of these sets.
Definition (Reaction). A reaction is a triplet a = (R, I, P), where R, I, P are finite sets
with R ∩ I = ∅ and R, I, P 6= ∅. If S is a set such that R, I, P ⊆ S, then a is a reaction
in S.

The reactions (R, I, P) operate over a finite set of entities S, called background set.
The theory of RSs is based on three assumptions:

• no permanency, meaning entities vanish unless sustained by a reaction;
• no counting, meaning the exact quantity of each entity is irrelevant;
• threshold nature of resources, meaning if an entity is present, it is present for all

possible reactions.

Definition. Let T be a finite set.

1. Let a be a reaction. Then a is enabled by T , denoted by ena(T) if Ra ⊆ T and
Ia∩T = ∅. The result of a on T , denoted by resa(T), is defined by: resa(T) := Pa

if ena(T) and resa(T) := ∅ otherwise.

2. Let A be a finite set of reactions. The result of A on T , denoted by resA(T), is
defined as resA(T) :=

⋃
a∈A resa(T).

Note that by virtue of the second assumption (2) if two reactions a, b ∈ A, with
both a and b enabled by T, then even if Ra ∩ Rb 6= ∅, still both Pa ⊆ resA(T) and
Pb ⊆ resA(T). Both reactions can use Ra ∩ Rb to produce their products. This would
not be allowed in other models such as Petri nets [22], a common model of concurrent
systems.

Let rac(S) be the set of all the reactions in S.

5

Definition (Reaction System). A Reaction System (RS) is a pair A = (S,A) such that
S is a finite set and A ⊆ rac(S) is a finite set of reactions in S.

The set S is called the background set of A; its elements, called entities, represent
molecular entities (e.g. atoms, ions, molecules) that may be present in the state of the
system modeled by A. The set A is called the set of reactions of A. Since S is finite, so
is A.

the behavior of a RS is formalized through the notion of an interactive process.
Definition (Interactive Process). Let A = (S,A) be a RS and let n > 0. An n-step
interactive process in A is a pair π = (γ, δ) such that γ := {Ci}i∈[0,n] is the context
sequence and δ := {Di}i∈[0,n] is the result sequence, where ∀i ∈ [0, n], Ci, Di ⊆ S,
D0 = ∅ and ∀i ∈ [0, n − 1], Di+1 := resA(Di ∪ Ci). We call τ := W0, . . . ,Wn the state
sequence, where Wi := Ci ∪Di for all i ∈ [0, n].

...

......∅δ :

γ :

C0 C1 C2 C3 C4 C5

D0 D1 D2 D3 D4 D5 D6

Figure 2.1: Interactive process of a reaction system.

Note that Ci and Di do not have to be disjointed.
W0 = C0is called the initial state of π. If Ci ⊆ Di for all i ∈ [1, n] then π is called

context-independent. For context-independent interactive process, we can take Ci = ∅
for all i = [1, n] without changing the state sequence.

In a context-independent state sequence τ = W0, . . . ,Wi,Wi+1, . . . ,Wn, during the
transition from Wi to Wi+1 all entities from Wi−resA(Wi) will not persist. This reflects
the assumption of no permanency (1). Thus, if τ is not context-independent, an entity
from a current state can also be sustained by the context Ci+1.
Definition (Sequence Shift). Let γ = {Ci}i∈[0,n] a context sequence. Given a positive
integer k ≤ n, let γk := {Ci+k}i∈[0,n−k].

6

2.1.1 Example: A binary counter

A reaction system can act as a cyclic n-bit counter in which external signals trigger
increment or decrement operations. To build the counter, let n > 0 be an integer and
define the background set as {p0, p1, . . . , pn−1} ∪ {dec, inc}.

Five sets of reactions describe a binary counter-like behavior:
aj = ({pj}, dec, inc, pj), ∀j ∈ [0, n]

bj = ({inc, p0, p1, . . . , pj−1}, dec, pj , pj), ∀j ∈ [0, n]

cj,k = ({inc, pk}, dec, pj , pk), ∀j, ks.t.0 ≤ j < k < n

dj = ({dec}, inc, p0, p1, . . . , pj , pj), ∀j ∈ [0, n]

ej,k = ({dec, pj , pk}, inc, pk), ∀j, ks.t.0 ≤ j < k < n

where reactions a cause the bits to be restrained in the next state if there is no
operation, reactions b implement the increment operation by flipping the least significant
zero to one, reactions c let the more significant bits remain, reactions d implements the
decrement operation by flipping to one the bits when there is no one at a lower position,
and reactions e let the more significant bits remain.

The complete RS Bn is defined as follows: Bn = (Sn, Bn) where

Sn = {p0, p1, . . . , pn−1} ∪ {dec, inc}

and
Bn = {aj , bj , dj |0 ≤ k < n} ∪ {cj,k, ej,k|0 ≤ l < k < n}

To illustrate the system in action consider the sequence of contexts: C0 = {p1, p3},
C1 = ∅, C2 = {inc}, C3 = {inc}, C4 = {dec}, C5 = {dec, inc}. This gives the result
sequence δ = ∅.{p1, p3}.{p1, p3}.{p0, p1, p3}.{p2, p3}.{p0, p1, p3}.∅ and state sequence
τ = {p1, p3}.{p1, p3}.{p1, p3, inc}.{p0, p1, p3, inc}.{p2, p3, dec}.{p0, p1, p3, dec, inc}.∅
that in binary representation is {1010}.{1010}.{1010}.{1011}.{1100}.{1011}.{0000} by
ignoring inc and dec.

2.1.2 Simple loops

The result sequence of a RS, generated by applying the reactions, can be different from
∅ for an infinite number of results. But if two results are the same, also the following
result will be the same. This implies the existence of a loop of states. To identify a loop
one can simply truncate the trace at position n and search for the result in position n+1
in the truncated trace.

If the entities provided by the context are not constant, the behavior might not be
as easily described. By restricting only on a constant set provided by the context, we
can be sure that the computation will find a loop.

These loops are called lollipops.
For example by providing the set {inc} as the context at each step of the system from

Example 2.1.1, we obtain the loop: {p1, p3}.{p0, p1, p3}.{p2, p3}.{p0, p2, p3}.{p1, p2, p3}.
{p0, p1, p2, p3}.{}.{p0}.{p1}.{p0, p1}.{p2}.{p0, p2}.{p1, p2}.{p0, p1, p2}.{p3}.{p0, p3}.

7

2.2 SOS rules for reaction systems
The behavior of a RS could be defined as a discrete time interactive process: a finite
context sequence describes the entities provided by the environment at each step, the
current state is determined by the union of the entities coming from the environment
with those produced from the previous step and the state sequence is determined by
applying all and only the enabled reactions to the set of entities available in the current
state.

Given the context sequence, the semantics of RSs is uniquely determined and can
be represented as a finite, deterministic and labeled or unlabeled transition system. RS
have had defined a Labeled Transition System (LTS) semantics as seen in[7].
Definition (RS processes). Let S be a set of entities. An RS process P is any term
defined by the following grammar:

P ::= [M] mixture process
M ::= (R, I, P) reaction

| D set of entities
| K context process
| M |M parallel composition

K ::= 0 nil context
| X process variable
| C.X set of entities

followed by context
| K +K non deterministic choice
| recX.K recursive operator

Where
R, I, P ⊆ S non empty sets of entities
C,D ⊆ S possibly empty set of entities
X a process variable

An RS process P embeds a mixture process M obtained as he parallel composition
of some reactions (R, I, P), some set of currently present entities D (possibly the empty
set ∅), and some context process K. For brevity sake M1|M2|M3 =

∏
i∈{1,2,3}Mi. A

process context K is a possibly nondeterministic and recursive system: the nil context
0 stops the computation; the prefixed context C.K provides the entities in C and then
uses K as the next context; the non deterministic choice K1 +K2 allows the context to
behave either as K1 or K2; X is a process variable; and recX.K is the recursive operator
of process algebras. For brevity sake K1 +K2 +K3 =

∑
i∈{1,2,3}Ki.

Definition (RSs as RS processes). Let A = (S,A) be a RS, and π = (γ, δ) an n-step
interactive process in A with γ = {Ci}i∈[0,n] and δ = {Di}i∈[0,n]. For any step i ∈ [0, n],
the corresponding RS process JA, πKi is defined as follows:

JA, πKi :=

[∏
a∈A

a|Di|Kγi

]

8

where the context process Kγi := Ci.Ci+1.Cn.0 is the sequentialization of the
entities offered by γi.
Definition (Label). A label is a tuple 〈W .R, I, P 〉 with W,R, I, P ⊆ S.

In a transition label 〈W . R, I, P 〉, W records the set of entities currently in the
system (produced in the previous step or provided by the context), R records the set of
entities whose presence is assumed (either because they are needed as reactants on an
applied reaction or because their presence prevents the application of some reaction), I
records the set of entities whose absence is assumed, and P records the set of entities
produced by the applied reactions.
Definition (Operational Semantics). The operational semantics of processes is defined
by the set of SOS inference rules in figure 2.2.

(Ent)
D

〈D . ∅,∅,∅〉−−−−−−−→ ∅
(Ctx)

C.K
〈C . ∅,∅,∅〉−−−−−−−→ K

K [recX.K/X]
〈W.R,I,P 〉−−−−−−−→ K ′

(Rec)
recX.K

〈W . R,I,P 〉−−−−−−−−→ K ′

K1
〈W.R,I,P 〉−−−−−−−→ K ′

1 (Suml)
K1 +K2

〈W . R,I,P 〉−−−−−−−−→ K ′
1

K2
〈W.R,I,P 〉−−−−−−−→ K ′

2 (Sumr)
K1 +K2

〈W . R,I,P 〉−−−−−−−−→ K ′
2

(Pro)
(R, I, P)

〈∅ . R,I,P 〉−−−−−−−→ (R, I, P)|P

J ⊆ I Q ⊆ R J ∪Q 6= ∅
(Inh)

(R, I, P)
〈∅ . R,I,P 〉−−−−−−−→ (R, I, P)|P

M1
〈W1.R1,I1,P1〉−−−−−−−−−→ M ′

1 M2
〈W2.R2,I2,P2〉−−−−−−−−−→ M ′

2 (W1 ∪W2 ∪R1 ∪R2) ∩ (I1 ∪ I2) (Par)
M1|M2

〈W1∪W2 . R1∪R2,I1∪I2,P1∪P2〉−−−−−−−−−−−−−−−−−−−−→ M ′
1|M ′

2

M
〈W.R,I,P 〉−−−−−−−→ M ′ R ⊆ W (Sys)
[M]

〈W . R,I,P 〉−−−−−−−−→ [M ′]

Figure 2.2: SOS semantics of the reaction system process

K [recX.K/X] denotes the process obtained by replacing in K every free occurrence
of the variable X with its recursive definition recX.K. The rule (Pro), executes the
reaction (R, I, P) (its reactants, inhibitors, and products are recorded the label), which
remains available at the next step together with P . The rule (Inh) applies when the
reaction (R, I, P) should not be executed; it records in the label the possible causes for
which the reaction is disabled: possibly some inhibiting entities (J ⊆ I) are present or
some reactants (Q ⊆ R) are missing, with J ∪Q 6= ∅, as at least one cause is needed for

9

explaining why the reaction is not enabled.

2.3 Positive Reaction Systems
A particular kind of Reaction Systems are those without inhibitors. Such reactions
are called positive and can be simply written as pairs (R,P) and are equivalent to
(R, ∅, P). One can always encode any standard RS A = (S,A) into an equivalent one
without inhibitors. In order to track the absence of entities, a new “negative” entity is
added for each original one. In any meaningful state W = D ∪ C there will always be
either one between a and ā, but never both. As a consequence, for any entity a ∈ SC ,
we must assume that the context will provide either a or ā. Define S := S] S̄ and
S̄ := {ā|a ∈ S}. A subscript D or C will be used to differentiate between entities related
to reaction products and related to the context.
Definition (State consistency). A set W ⊆ S is non-contradictory if for all entities
a ∈ S it holds that {a, ā} * W. A non-contradictory state W ⊆ S is consistent if, for
any entity a ∈ S, either a ∈ W or ā ∈ W holds.
Definition (Positive RS[8]). A Positive RS is a Reaction System A+ = (S, A) that
satisfies the following conditions:

1. Each reaction r in A is positive, i.e., r = (R, ∅,P) for some non-contradictory sets
R and P.

2. Consistency preservation: for any consistent state W, the result set resA+(W)
must be consistent.

If one assumes that the initial state D0 ⊆ SD is a non-contradictory set and that the
sets C0, . . . ,Cn ⊆ SC provided by the context are non-contradictory sets, the second
condition of 2 guarantees that all result states traversed by the computation will be
consistent as well.

2.3.1 From RSs to Positive RSs

For each standard RS A = (S,A) it is possible to construct a Positive RS A+ = (S, A+)
that exactly mimic the behavior of A. The reactions in A+ can be split in two categories:
A+

pos that simply embeds the original reactions A and A+
neg whose reactions serve for

negative entities bookkeeping.
For each reaction (R, I, P) ∈ A there will be one positive reaction (R∪ Ī , P) ∈ A+

pos.
Extra reactions are needed to track the absence of the products of the original reactions.
They will be produced whenever no reaction in A that produces a is enabled. For this
purpose, assume to collect all reactions in A that are capable of producing a: to ensure
that none of them are enabled, we must make sure that, for each one, at least one
reactant is absent or at least one inhibitor is present.
Definition (Prohibiting set). Let A = (S,A) be RS and a ∈ SD one of its entities. A
non-contradictory set T ⊆ S is a prohibiting set for a if for any reaction (R, I, P ∪a) ∈ A
we have that T ∩ (I ∪ R̄) 6= ∅. Denote the set of prohibiting sets for a with ProhA(a).

10

Definition (Encoding RSs into PRSs). Let A = (S,A) be a RS, its encoding into a
Positive RS is obtained by considering A+ := (S, A+) whose set of positive reactions
A+ := A+

pos ∪A+
neg is defined as follows:

A+
pos :=

{
(R ∪ Ī , P)|(R, I, P) ∈ A

}
A+

neg :=
⋃
a∈S

{(T, ā)|T ∈ ProhA(a)}

The resulting A+ satisfies the two conditions from Definition and thus is a Positive
RS.

The states of the new Positive RS are in bijection with the states of the old system
and can be proven that the two systems compute exactly the same states at each step.

2.3.2 Minimization

The procedure of converting a RS into a Positive RS can produce a system with many
redundant reactions. The following rules are used to minimize the reactions after they
are computed:

1. The reaction r1 = (R1, I1, P) can be omitted if a reaction r2 = (R2, I2, P) such
that R2 ⊆ R1 and I2 ⊆ I1 is present.

2. If both reactions r1 = (R ∪ {a}, I, P) and r2 = (R, I ∪ {a}, P) are present, they
can be replaced by r = (R, I, P).

In general one can apply a minimization process to both standard and Positive RS
and derive a simplified version of the original system with fewer reactions.

2.3.3 Slicing

In the context of programming, dynamic slicing is a technique that helps a user to debug
a program by simplifying a partial execution trace, by pruning parts which are irrelevant
and highlighting parts of the program wich are responsible for the production of an error.
In the case of RSs, the goal is to highlight how a subset of the elements in a state were
originated. This include the reactants and reactions that were responsible for producing
them.

Starting from the pair Dσ
Cm

denoting the user’s marking and proceeding backwards,
apply iteratively a slicing step that deletes from the partial computation all information
not related to Dσ. The sliced trace will contain only the subsets of entities and reactions
which are necessary for deriving the marked entities.

Since the algorithm 1[8] can only capture dependencies related to reactants, but
ignores the ones related to inhibitors, converting the RS into a Positive RS makes possible
the tracking of the absence of entities via negative entities. Minimizing the Positive RS
reduces the noise in the output and is thus desirable.

11

Algorithm 1 Trace Slicer
Input:- a reaction system A

- a trace T = D0
C0

N1−−→ · · · Nm−−→ Dm
Cm

- a marking Dσ ⊆ Dm

Output: a sliced trace D′
0

C′
0

N ′
1−−→ · · · N ′

m−−→ Dσ
Cm

1: D′
m := Dσ

2: for i = {m,m− 1, . . . , 1} do
3: D′

i−1 := ∅
4: C ′

i−1 := ∅
5: N ′

i := ∅
6: for rj = (Rj , Ij , Pj) ∈ Ni such that (D′

i ∩ Pj 6= ∅) do
7: N ′

i := N ′
i ∪ {j}

8: C ′
i−1 := C ′

i−1 ∪ (Rj ∩ SC)
9: D′

i−1 := D′
i−1 ∪ (Rj ∩ SD)

10: end for
11: end for

2.4 Bisimulation
Given two distinct RS processes, the natural question to ask would be if their simulation
is the same, or at least behaves the same. Bisimulation is one such relation, defined in
terms of coinductive games, of fixed point theory and of logic. Bisimulation equivalence
aims to identify transitions systems with the same branching structure, and wich thus
can simulate each other in a stepwise manner.
Definition (Transition System[2]). A transition system TS is a tuple (S,Act,→, I, AP,L)
where:

• S is a set of states,
• Act is a set of actions,
• →⊆ S ×Act× S is a transition relation,
• I ⊆ S is a set of initial states,
• AP is a set of atomic propositions,
• L : S → 2AP is a labeling function.

TS is called finite if S, Act, and AP are finite.
The intuitive behavior of a transition system can be described as follows: the tran-

sition system start in some initial state s0 ∈ I and evolves according to the transition
relation →. Given s as the current state, then a transition s

α−→ s′ is selected nonde-
terministically and taken, meaning the action α is performed and the transition system
evolves from state s into the state s′. The labeling function L relates a set L(s) ∈ 2AP

of atomic propositions to any state s. It intuitively stands for exactly those atomic
propositions α ∈ AP which are satisfied by state s.

12

Definition (Bisimulation Equivalence[2]). Let TSi = (Si, Acti,→i, Ii, AP, Li), i ∈ {1, 2},
be transition systems over AP. A bisimulation for (TS1, TS2) is a binary relation R ⊆
S1 × S2 such that:

• ∀s1 ∈ I1(∃s2 ∈ I2.(s1, s2) ∈ R) and ∀s2 ∈ I2(∃s1 ∈ I1.(s1, s2) ∈ R)

• for all (s1, s2) ∈ R it holds:

1. L1(s1) = L2(s2)

2. if s′1 ∈ Post(s1) then there exists s′2 ∈ Post(s2) with (s′1, s
′
2) ∈ R

3. if s′2 ∈ Post(s2) then there exists s′1 ∈ Post(s1) with (s′1, s
′
2) ∈ R.

TS1 and TS2 are bisimulation-equivalent (bisimilar), denoted TS1 ∼ TS2, if there
exists a bisimulation R for (TS1, TS2).

Where Post(s) is the set of successors of s defined as

Post(s) :=
⋃

α∈Act

{
s′ ∈ S

∣∣∣s α−→ s′
}

An intuitive way to see bisimulation is by framing it as a game between an attacker
and a defender: the attacker wants to disprove the equivalence between two processes s
and t, the latter tries to show that s and t are equivalent. Each turn the attacker picks
one process and one transition s

α−→ s′, the defender must reply by picking one transition
t

α−→ t′ of the other process with exactly the same label α. The game ends either with
the attacker winning by finding a transition with no equivalent one in the other process
or with the attacker losing by having no transitions available.

2.4.1 Algorithms for evaluating bisimulation

Follows a definition of a partition, used extensively in the following algorithms:
Definition (Partition). A partition of S is a set {B0, . . . , Bk}, k ≥ 0 of non-empty
subsets of S such that:

• Bi ∩Bj = ∅, for all 0 ≤ i < j ≤ k,
• S = B0 ∪B1 ∪ . . . ∪Bk.

An equivalence relation over the set of states S can be represented as a partition of
the states. The sets Bi are called blocks.

Let π and π′ be two partitions of S. π′ is a refinement of π if for each block B′ ∈ π′

there exists some block B ∈ π such that B′ ⊆ B.

The algorithm of Kanellakis and Smolka[1] Given a transition system T =
(S,Act,→, I, AP,L), let π = {B0, . . . , Bk}, k ≥ 0 be a partition of the set of states
S. The algorithm due to Kanellakis and Smolka is based on the notion of splitter.

13

Definition (Splitter). A splitter for a block Bi ∈ π is a block Bj ∈ π such that, for some
action α ∈ Act, some states in Bi have α-labeled transitions whose target is a state in
Bj and others do not.

Intuitively, thinking of blocks as representing approximations of equivalence classes
of processes with respect to strong bisimilarity, the existence of a splitter Bj for a block
Bi in the current partition indicates that we have a reason for distinguishing two groups
of sets of states in Bi, namely those that afford an α-labeled transition leading to a state
in Bj and those that do not. Therefore Bi can be split by Bj with respect to action α
into the two new blocks:

B1
i =

{
s
∣∣∣s ∈ Bi and s

α−→ s′ for some s′ ∈ Bj

}
and

B2
i = Bi \B1

i .

This splitting results in the new partition:

π′ =
{
Bo, . . . , Bi−1, B

1
i , B

2
i , Bi+1, . . . , Bk

}
which is a refinement of π.

The algorithm of Kanellakis and Smolka iterate the splitting of some blocks Bi by
some blocks Bj with respect to some action α until no further refinement of the current
partition is possible. The resulting partition coincides with bisimilarity over the input
labeled transition systems when the initial partition πinitial is chosen to be equal to S
and is called the coarsest stable partition.
Definition (Stable Partition and Coarsest Stable Partition). A set B ⊆ S is stable with
respect to a set I ⊆ S if either B ⊆ pre(I) or B ∩ pre(I) = ∅.

A partition π is stable with respect to a set I if each block B ∈ π is stable with
respect to I.

A partition π is stable with respect to a partition π′ if π is stable with respect to
each block B′ ∈ π′. A partition π is stable if it is stable with respect to itself.

The coarsest stable refinement of a partition πinitial is a stable partition that is refined
by any other stable partition that refines πinitial.

Note that B ⊆ S is stable with respect to a block C ⊆ S if and only if C is not a
splitter for B.

Follows the pseudocode for the algorithm of Kanellakis and Smolka[1].
The algorithm uses the function split(B,α, π) which given a partition π, a block

B ∈ π and an action α, splits B with respect to each block in π and action α.
Theorem (Kanellakis and Smolka). When applied to a finite labeled transition system
with n states and m transitions, the algorithm of Kanellakis and Smolka computes the
partition corresponding to bisimilarity in time O(n ·m).

Proof of correctness relies on the fact that when changed is false, there is no splitter
for any of the blocks in π. Moreover, if we denote by πi the partition after the i-iteration
of the main loop, we have ∼⊆∼i⊆ πi. Thus the algorithm terminates with π =∼.

14

1: π := S
2: changed := true
3: while changed do
4: changed := false
5: for each block B ∈ π do
6: for each action α do
7: sort the α-labeled transitions from states in B
8: if split(B,α, π) = {B1, B2} 6= {B} then
9: refine π by replacing B with B1 and B2

10: changed := true
11: end if
12: end for
13: end for
14: end while

1: procedure split(B,α, π)
2: choose some state s ∈ B
3: B1, B2 := ∅
4: for each state t ∈ B do
5: if s and t can reach the same set of blocks in π via α-labeled transitions then
6: B1 := B1 ∪ {t}
7: else
8: B2 := B2 ∪ {t}
9: end if

10: end for
11: if B2 is empty then
12: return {B1}
13: else
14: return {B1, B2}
15: end if
16: end procedure

15

The algorithm of Paige and Tarjan[10] Performance of the algorithm by Kanel-
lakis and Smolka can be significantly improved through the use of more complex data
structures. Paige and Tarjan proposed an algorithm that utilizes information about pre-
vious splits to make future splits more efficient. A simple algorithm over a one symbol
alphabet is presented, followed by an algorithm that converts any LTS into a one symbol
LTS.

The Paige-Tarjan algorithm is based on the following observation. Let B be stable
with respect to S, and let S be partitioned into S1 and S2. Then, if B ∩ S = ∅, B is
stable with respect to both S1 and S2. Otherwise B can be split into three blocks:

B1 = B \ pre(S2),

B12 = B ∩ pre(S1) ∩ pre(S2),

B2 = B \ pre(S1).

The improvement in complexity that the Paige-Tarjan algorithm provides over the al-
gorithm by Kanellakis and Smolka stems from the fact that three-way splitting can be
performed in time proportional to the size of the smaller of the two blocks S1, S2.

Two types of splitter can be identified: simple and compound splitters.
simple splitters are used to split blocks in π into two disjoint subsets as done in the

algorithm of Kanellakis and Smolka.
Definition (Simple splitting). Let π be a partition and let B be a set of states in S.
Define split(B, π) as the following procedure:

For each block B′ ∈ π such that B′ is not stable with respect to B, replace B′ by
the blocks

B′
1 = B′ ∩ pre(B) and

B′
2 = B′ \ pre(B).

B is a splitter for π when split(B, π) 6= π, in which case π is refined with respect
to B and split(B, π) is the partition that results from that refinement.

Some useful properties follow:
Lemma. [1]

1. Stability is preserved by refinement: if π refines π′ and π′ is stable with respect to
a set of states I, then so is π.

2. Stability is preserved by union: if π is stable with respect to sets I1 and I2, then
π is also stable with respect to S1 ∪ S2.

3. Assume that B ⊆ S. Let π1 and π2 be two partitions of S such that π1 refines π2.
Then split(B, π1) refines split(B, π2).

4. Assume that B,B′ ⊆ S. Let π be a partition of S. Then

split(B, split(B′, π)) = split(B′, split(B, π))

16

In order to implement the algorithm efficiently, it is useful to reduce the problem
to that of considering a labeled transition system without deadlocked states, meaning
without states with no outgoing edge. This can be done easily by preprocessing the
initial partition πintial by splitting each block B ∈ πinitial into:

B1 = B ∩ pre(S) and
B2 = B \ pre(S).

B2 will never be split again by the refinement algorithm. Therefore run the refinement
algorithm starting from the partition π′

initial = {B1|B ∈ πinitial}.
In order to find splitters efficiently, some additional information is kept. The algo-

rithm maintains another partition X such that

• π is a refinement of X and
• π is stable with respect to X.

Initially X = {S}. Follows a general outline of the algorithm.

1: while π 6= X do
2: Find a block I ∈ X \ π
3: Find a block B ∈ π such that B ⊆ S and |B| ≤ |I|

2
4: Replace I withing X with the two sets B and I \B
5: Replace π with split(I \B, split(B, π)).
6: end while

The efficiency of the above algorithm relies on the heuristic for the choice of the block
B at line 3 and on the use of three-way splitting to implement line 5 efficiently.

Suppose that we have a partition π that is stable with respect to a set of states I that
is a union of some of the blocks in π. Assume also that π is refined first with respect to
a non-empty set B ⊂ I and then with respect to I \B. Two properties can be observed:

• Refining π with respect to B splits a block D ∈ π into two blocks D1 = D∩pre(B)
and D2 = D \ pre(B) if, and only if, D is not stable with respect to B.

• Refining further split(B, π) with respect to I \ B splits the block D1 into two
blocks D11 = D1 ∩ pre(S \B) and D12 = D1 \D11 if, and only if, D1 is not stable
with respect to S \B.

A block I is simple if it is also a block of π and is compound otherwise. Note
that a compound block I contains at least two blocks of π. A compound block can be
partitioned into B and I \ B in such a way that both of the properties 2.4.1 hold. If π
is stable with respect to I, either D ⊆ pre(I) or D ∩ pre(I) = ∅. If D is not stable with
respect to B, it holds that D * pre(B) and D ∩ pre(B) 6= ∅. Therefore, D ⊆ pre(I).
One can thus infer that D12 = D1 \D11 = D1∩(pre(B)\pre(I \B)), which is the crucial
observation underlying the implementation of the algorithm.

17

D

D1 = D ∩ pre(B)

D2 = D \ pre(B)

D11 = D ∩ pre(B) ∩ pre(I \B)

D12 = D \ pre(I \B)

Figure 2.3: Three-way splitting of a block.

Depicted in 2.3 the result of a three-way split of a block D.
The time performance of the algorithm by Paige and Tarjan relies on the following

observations:

• Each state in the input labeled transition system is in at most log(n+1) blocks B
used as refining sets, since each is at most half the size of the previous one.

• A refinement step with respect to a block B, as shown by Paige and Tarjan[16],
can be implemented in time O

(
|B|+

∑
b∈B|pre(b)|

)
by means of use of appropriate

data structures.

The algorithm has thus an O(m logn) time bound.

log-space reduction of bisimilarity checking over a one-letter action set
In order to apply the previous algorithm to a LTS with arbitrary number of labels, there
needs to be first a reduction to an equivalent LTS with only one symbol as label. Assume
two given processes P and Q over an LTS T with the set of actions {α1, α2, . . . , αl}. Let
T ′ be the modified LTS which contains all the process of T together with some additional
ones defined in the following way: for every transition P1

αi−→ P2 in T we add into T ′

• two transitions P1 → P(P1,αi,P2) and P(P1,αi,P2) → P2 where P(P1,αi,P2) is a newly
added state, and

• a newly added path of length i from P(P1,αi,P2).

Finally for every process P in T we create in T ′ a newly added path of length l + 1
starting from P . A small optimization can be added by sorting the frequency of labels
and thus creating the lowest possible number of auxiliary nodes for each label.

18

P1 P2

α1

P3

α2
α2 P1 P2

P3

Figure 2.4: Example of reduction

19

20

Chapter 3

Design

Two sub-problems where identified during the design: simulating the behavior of Re-
action Systems, RS processes and other operations on LTS, and interacting with the
user in a intuitive manner. The programming language chosen was Rust[27], since it
offered good performance and ease of development. Two Git repositories are provided:
ReactionSystems[19] and ReactionSystemsGUI[20].

The ReactionSystems project follows a modular architecture and clear design prin-
ciples to mirror the theoretical model; it implements procedures over RS as pure rust
functions and is structured as a library. It also provides a crude Command Line Inter-
face for some of the functions provided. The code is organized in workspaces in order to
reduce compilation time and aid code reuse. In the second Git repository a native and
web application is implemented in Rust and in WebAssembly[18] generated from Rust
code. The web application consists of only static files and as such may be served by a
simple HTTP server.

In the signature of the functions, types will be displayed in teletype font. The
decorator ? will be used for both option types and for result types without distinction.

3.1 ReactionSystems
The design is structured to faithfully implement the reaction system formalism while re-
maining flexible. It provides a foundation that matches theoretical definitions (ensuring
correctness) and supports further expansion (such as adding optimization, visualization,
or integration with other tools) by maintaining a clean separation between the model
representation and the execution logic. Since the language Rust supports object-oriented
programming via traits, but lacks generic inheritance, the design of the basic building
blocks of RSs are designed around this limitation. Usually a basic trait is provided
for each of them and an extension of the trait is implemented for all structures that
implement the basic trait.

Since it is not practical for a user to specify the structures in Rust, a syntax for
the basic structures has been specified. This syntax tries to remain as much as possible
compatible with ones from previous software. To develop the parser, LALRPOP[9] was

21

chosen as the parser generator framework. LALRPOP code is transpiled to Rust code
via macros and then compiled to machine code.

Set Reaction Choices

Label Environment Process

SystemGraph

Figure 3.1: Basic structures and relationships between them

3.1.1 Entities and Translator

Entities are the most basic data structure that a RS need to keep track of. They don’t
have a specified interface and are instead treated only in sets.

Positive elements are also defined and have a state, either Positive or Negative.
Since internally entities are represented as integers, a structure that keeps track

of assignment between strings and integer is provided (Translator). This poses a
problem with the default methods for formatting available in Rust, since for the trait
Display and Debug only the structure itself can be used to generate the string. The
trait PrintableWithTranslator and the structure Formatter solve this issue by incor-
porating the Translator into the struct. Display is then implemented on the generic
structure Translator.

3.1.2 Set

The common procedures required for all sets are:

• is_subset(a, b) → bool, which should return true if a ⊆ b;
• is_disjoint(a, b) → bool, which should return true if a ∩ b = ∅;
• union(a, b) → set, which should return a ∪ b;
• push(a, b), which should replace a with a ∪ b in place;
• intersection(a, b) → set, which should return a ∩ b;
• subtraction(a, b) → set, which should return a \ b;
• len(a) → int, which should return the number of elements in a;
• is_empty(a) → bool, which should return true if a has no elements, false other-

wise;
• contains(a, e : entity) → bool, which should return e ∈ a;

22

• add(a, e : element), which should add the element e to a in place.

Some other procedures are required for ease of use:

• extend(a, b?), which should extend a with a ∪ b if b is a non-null value, and leave
a unchanged otherwise, similar to push (3.1.2).

Two other procedures are implemented for all structs that implement the BasicSet
trait:

• iter(a) → iterable, which returns an iterator over the elements of the set a;
• split(a, trace : [set]) → ([set], [set])?, which returns the prefix and the loop

part of a trace.

Both normal sets and positive sets satisfy this interface, but have additional specific
functions for converting between the two.

The syntax for sets is:

Set ::= {S}
S ::= s , S

| s
| ε

Where
s is a string
ε is the empty string

Syntax 3.1: Syntax for Set

PositiveSet ::= {S}
S ::= state s , S

| state s
| ε

state ::= +
| -

Where
s is a string
ε is the empty string

Syntax 3.2: Syntax for Positive Set

3.1.3 Reaction

The methods required for all reactions are:

• enabled(r, state : set) → bool, which returns true if the reaction is enabled given
the entities supplied by state;

• compute_step(r, state : set) → set?, which returns the products of the reaction
if it is enabled by state.

All reactions that satisfy the basic trait automatically implement the following meth-
ods:

• find_loop(rs : [reaction], entities : set, q : set) → ([set], [set]), which
finds a loop and returns the sets that make up the prefix and the loop separately;

• find_only_loop(rs : [reaction], entities : set, q : set) → [set], which finds a
loop and returns the sets that form it;

23

• find_prefix_len_loop(rs : [reaction], entities : set, q : set) → (integer, [set]),
which finds a loop and returns the length of the prefix and the sequence of sets
that compose the loop;

Reaction ::= [s, s, s]
| [r: s, i: s, p: s]

Where
s is a set, see 3.1

Syntax 3.3: Syntax for Reaction

PositiveReaction ::= [s, s, s]
| [r: s, i: s, p: s]

Where
s is a positive set, see 3.2

Syntax 3.4: Syntax for Positive Reaction

3.1.4 Process

Process structures mirror the structure of RS processes as described in Section 2.2. Since
there is not much behavior that is shared between implementations and since usually
they are used with pattern matching, the trait that describe a basic process is very
simple.

• concat(a, b) → process, which returns a new process a|b flattened with regards
to parallel composition;

• all_elements(a) → set, which returns all the entities used in the process;
• filter_delta(a, id : entity) → set?, which returns the first rule X = Q.rec(X)

for any symbol X.

24

Process ::= [P]
P ::= C,P

| C

C ::= (C)
| nill
| s.C
| C+C
| ?r?.C
| <i,C>.C
| x

Where
s is a set,

see 3.1
r is a reaction,

see 3.3
i ∈ N
x is a variable name

Syntax 3.5: Syntax for Process

PositiveP ::= [P]
P ::= C,P

| C

C ::= (C)
| nill
| ps.C
| C+C
| ?pr?.C
| <i,C>.C
| x

Where
ps is a positive set,

see 3.2
pr is a positive reaction,

see 3.4
i ∈ N
x is a variable name

Syntax 3.6: Syntax for Positive Process

3.1.5 Choices

Since one RS process may have more than one possible next system when evaluating,
there is a need to express all possible choices for next states. The structure choices
represents all those possible continuations, associating a set with a process. The set
signifies all the entities that are provided by the context by choosing that context.
One particular operation called shuffle is needed: given two choices structures c1
and c2 where ci : set ⇀ process, i ∈ {1, 2}, it generates a new choices structure c′

such that ∀s1 ∈ domain(c1).(∀s2 ∈ domain(c2).domain(c′) 3 (s1 ∪ s2) ∧ c′(s1 ∪ s2) =
concat(c1(s1), c2(s2))). Intuitively it is all the possible combinations of two parallel
processes.

3.1.6 Environment

An environment can be thought as an association between variable names and processes.
The basic interface requires the following methods:

• get(a, k : entity) → process, which returns the process associated with the
variable k;

• all_elements(a) → set, which returns all the entities used in any of the processes;
• unfold(a, context : process, s : set) → choices?, which returns the list of choices

for the context, given the process definitions environment and is used to generate
the next systems with the SOS rules.

25

These methods are automatically implemented for all BasicEnvironment:

• lollipops_decomposed,
• lollipops_decomposed_named,
• lollipops_prefix_len_loop_decomposed,
• lollipops_prefix_len_loop_decomposed_named,
• lollipops_only_loop_decomposed,
• lollipops_only_loop_decomposed_named.

They all try to find a loop and return some information about the found loop. The
_named variants require a variable symbol for which in the environment there is an
association to a process with the form X = Q.rec(X) = Q.X, where Q is a set and X is
a variable name. The others instead finds all the symbols that satisfy the constraint and
uses them all. Function lollipops_decomposed returns the trace of sets for the prefix
and the trace of sets for the loop for each recursive variable.
lollipops_prefix_len_loop_decomposed returns the length of the prefix and the trace
of the loop for each recursive variable. lollipops_only_loop_decomposed returns the
trace of the loop for each recursive variable.

Environment ::= [E]
E ::= x = c,E

| x = c
| ε

Where
c is a process, see 3.5
x is a variable name
ε is the empty string

Syntax 3.7: Syntax for Environment

PositiveEnvironment ::= [E]
E ::= x = pc,E

| x = pc
| ε

Where
pc is a positive process, see 3.6
x is a variable name
ε is the empty string

Syntax 3.8: Syntax for Positive Environment

3.1.7 System

The basic interface for systems is only the following methods:

26

• to_transitions_iterator(sys) → iterator that yields (label, system)
• to_slicing_iterator(sys) → iterator that yields

(set, set, [int], system)
• context_elements(sys) → set
• products_elements(sys) → set

The method to_transitions_iterator should return an iterator over all the possi-
ble evaluations of the system. Likewise to_slicing_iterator should return an iterator
over the same outgoing edges, but with information that support the creation of a trace
to be used for slicing.

The two methods context_elements and products_elements should return the set
of entities that are related to the context and the one related to the reactions. Since it
may be a computationally expensive calculation, the result is cached in the structures.
The heuristic that decides which elements belong to the context and which belong to
the reactions might give incorrect results, so methods are provided that override the
calculated values.

Other methods are implemented for all structures that satisfy the previous interface:

• unfold(sys) → choices?, which, by calling the same method of the environment,
returns the list of choices for the context;

• run(sys) → [system]?, which computes the sequence of systems for the leftmost
execution;

• digraph(sys) → graph?, which computes the graph generated by the execution of
the system;

• target(sys) → (integer, set)?, which returns the state in one of the terminal
states and the number of steps to arrive at the last state;

• slice_trace(sys) → trace?, which generates, similarly to run, a trace appropri-
ate to run slicing calculations over;

• lollipops(sys) → [([set], [set])], similar to the method
lollipops_decomposed provided by environment.

• lollipops_only_loop_named(sys, el : element) → [[set]]?, similar to the method
provided by environment, returns the sequence of entities in the loop individuated
by the variable name el in the environment.

27

System ::= Environment:e
Initial Entities:s
Context:c
Reactions: (R)

R ::= r;R
| ε

Where
e is an environment, see 3.7
s is a set, see 3.1
c is a Process, see 3.5
r is a reaction, see 3.3
ε is the empty string

Syntax 3.9: Syntax for System
While writing systems, occurs often to forget an element or swap elements names.

This type of user error is particularly difficult to spot since most element names are
not easily recognizable and the system grammar is particularly dense in information. A
useful method to mitigate these problems is provided: statistics. For the structure
System a static analysis of the entities of the system is run and various parameters are
checked and reported.

3.1.8 Label

The label structure holds the information about how entities are used in the production
of a system and are the labels on the edges of the graphs. Since the only use is to hold
data, no meaningful method is required.

28

Label ::= [Entities:s,
Context:s,
Reactants:s,
ReactantsAbsent:s,
Inhibitors:s,
InhibitorsPresent:s,
Products:s]

Where
s is a set, see 3.1

Syntax 3.10: Syntax for Label

Label ::= [Entities:ps,
Context:ps,
Reactants:ps,
ReactantsAbsent:ps,
Inhibitors:ps,
InhibitorsPresent:ps,
Products:ps]

Where
ps is a positive set, see 3.2

Syntax 3.11: Syntax for Positive Environment

3.1.9 Graph

The project uses petgraph[5] as graph data structure library. petgraph provides several
graph types, but the only one used is Graph, since it provided the best performance
during testing. The library has methods for converting the graph structures into Dot
Language[12] and GraphML File Format[24]. The Dot methods where found to be not
powerful enough and where partially rewritten in the file dot.rs.

Custom formatting of the graphs was a key requirement, so domain specific languages
are provided to customize the appearance of the generated formats. Four structures are
provided:

• NodeDisplay, to specify the text displayed on each node;
• EdgeDisplay, to specify the text displayed on each edge;
• NodeColor, to specify the color of each node;
• EdgeColor, to specify the color of each edge.

Follows the BNF for each of the languages:

29

https://github.com/elvisrossi/ReactionSystems/blob/master/rsprocess/src/dot.rs

NodeDisplay ::= E
| E "s" NodeDisplay

E ::= Hide
| Entities
| MaskEntities S
| ExcludeEntities S
| Context
| UncommonEntities
| MaskUncommonEntities S

Where
S is a sets of entities
s is a possibly empty string

Syntax 3.12: Syntax for NodeDisplay

Hide ignores the content of the node and prints the empty string, Entities prints
the list of entities currently available in the system, MaskEntities S prints the list
of entities masked by a specified set S, ExcludeEntities S prints the list of entities
except for the entities specified by the set S, Context prints the context of the system,
UncommonEntities prints only the entities that are not shared between all the nodes
in the graph, MaskUncommonEntities S prints the entities not shared between all the
nodes in the graph and masked by a specified set S.

30

EdgeDisplay ::= E
| E "s" EdgeDisplay

E ::= Hide
| Products
| MaskProducts S
| UncommonProducts
| UncommonMaskProducts S
| Entities
| MaskEntities S
| UncommonEntities
| UncommonMaskEntities S
| Context
| MaskContext S
| UncommonContext
| UncommonMaskContext S
| Union
| MaskUnion S
| UncommonUnion
| UncommonMaskUnion S
| Difference
| MaskDifference S
| UncommonDifference
| UncommonMaskDifference S
| EntitiesDeleted
| MaskEntitiesDeleted S
| UncommonEntitiesDeleted
| UncommonMaskEntitiesDeleted S
| EntitiesAdded
| MaskEntitiesAdded S
| UncommonEntitiesAdded
| UncommonMaskEntitiesAdded S

Where
S is a sets of entities
s is a possibly empty string

Syntax 3.13: Syntax for EdgeDisplay

Four version of each base option is available: normal, Mask which masks the normal
set of entities with a specified set, Uncommon which considers only the entities that are
not shared between all edges of the graph, and UncommonMask which combines the two
functionalities. The base options return the corresponding entities available in the label.

31

NodeColor ::= !" C "
| E || NodeColor

E ::= Entities op S ?"C"
| Context.Nill ?"C"
| Context.RecursiveIdentifier (x)?"C"
| Context.EntitySet op S ?"C"
| Context.NonDeterministicChoice ?"C"
| Context.Summation ?"C"
| Context.WaitEntity ?"C"

op ::= == or =
| < or ⊂
| <= or ⊆
| > or ⊃
| >= or ⊇

Where
C is a string that specifies the color

of the node
S is a sets of entities
x is a variable

Syntax 3.14: Syntax for NodeColor

The NodeColor structure assigns the first correct color to the node. The structure
can be thought of as a list of pairs; each pair has an entry that evaluated returns true
or false, and an entry that holds the desired color of the node. To find the correct color,
the list is scanned until the first pair that returns true and the color is assigned. If no
pair returns true, a default value is assigned, specified after !. The possible functions
expressible by the grammar are the ones expressed by E and query either the entities
available or the current context.

32

EdgeColor ::= !" C "
| E || EdgeColor

E ::= Entities op S ?"C"
| Context op S ?"C"
| T op S ?"C"
| Reactants op S ?"C"
| AbsentReactants op S ?"C"
| Inhibitors op S ?"C"
| PresentInhibitors op S ?"C"
| Products op S ?"C"

op ::= == or =
| < or ⊂
| <= or ⊆
| > or ⊃
| >= or ⊇

Where
C is a string that specifies the color

of the node
S is a sets of entities
x is a variable

Syntax 3.15: Syntax for EdgeColor

EdgeColor behaves in a similar manner as NodeColor, except the base structure is
a Label, so every field is a Set.

3.1.10 Slicing Trace

Only one structure for slicing trace is provided, but is made to work with both RS and
Positive RS with generics. The only method they have is slice(trace,marking : set) →
trace? which returns, if successful, a new sliced trace.

3.1.11 Bisimilarity and Bisimulation

In the workspace bisimilarity the algorithms by Kanellakis and Smolka, and Paige
and Tarjan are implemented over generic graphs. Instead of an implementation over
graphs with generic parameters, the input have to implement generic traits from the
petgraph library, making it possible to use with different types of graph, for example
spare graphs or matrix graphs.

One key feature was the ability to control via a domain specific language the labels
on the edges of the graphs. The developed language is able to also specify values over
nodes such that nodes with equal value may be collapsed into one node with outgoing
and incoming edges inherited from the original nodes. The code for the typechecking
and execution is available in the library assert.

33

The language has way to define subroutines or functions, has no while loop and
limited for loop construction, so that the execution always terminates.

Assert ::= label{Tree} label is replaced by other
strings to differentiate
languages

Tree ::= Tree;Tree
| if E then {Tree};
| if E then {Tree}

else {Tree};
| let x = E;
| let x.Qualifier = E;
| return E;
| for x in Range {Tree};

E ::= unaryP(E)
| E.unaryS
| (E binary E)
| binaryP(E,E)
| Term

Term ::= true
| false
| x
| i
| l
| set
| 's' element
| "s" string
| (E)

Range ::= {E} iterate over set
| {E..E} iterate over integer range

Where
S is a sets of entities, see 3.1
i ∈ Z
x is a variable name
l is a label, see 3.1
set is a set, see 3.1
s is a string

Syntax 3.16: Syntax for Assert

Continues on the next page.

34

unaryP ::= empty
| length
| tostr
| toel string to element
| Entities
| Context
| Reactants
| ReactantsAbsent
| Inhibitors
| InhibitorsPresent
| Products
| AvailableEntities
| AllReactants
| AllInhibitors
| SystemEntities
| SystemContext
| source source of edge
| target target of edge
| label label of an edge
| neighbours node’s neighbours
| system node’s system

binary ::= && logical and, set intersection
| || logical or, set union
| ^^ logical xor, set xor
| < less, set inclusion
| <= less equal, set inclusion or equal
| > greater, reverse set inclusion
| >= greater equal,

reverse set inclusion or equal
| ==
| !=
| +
| *
| ^
| / quotient
| % reminder
| :: concatenation

binaryP ::= substr
| min
| max
| commonsubstr

unaryS ::= Entities
| length
| tostr
| toel

Syntax 3.16: Syntax for Assert (Continued)
35

Four different languages are provided as modules in the workspace Assert:

• relabel
• grouping
• positive_relabel
• positive_grouping

relabel has, in its syntax, the first token equal to label, has as special variables
label and edge that function as input, with edge.label == label. It’s used for
grouping labels before calculating bisimilarity. grouping has, in its syntax, the first
token equal to node, has as special variables entities and node that function as in-
put, with node.system.SystemEntities == entities. It’s used for grouping nodes.
positive_relabel and positive_grouping have as first token label and node respec-
tively and behave in a similar manner compared to their respective functions over RS.

The template language requires two structures to function relating to the input of
the language: a type structure and a value structure. The trait SpecialVariables
holds all the necessary functions that need to be implemented for the special variables
to function. Finally the generic language can have the two functions typecheck and
execute implemented.

The language is very limited and is only designed for simple algorithms since there
is no scoping. Typechecking consists in only asserting acceptable types for unary and
binary functions, range declaration and for all return statements to return the same
type.

A version for Positive RS is also provided and reflects the previous grammar with
basic types replaced with their positive versions.

3.1.12 Grammar and Separated Grammar

Two workspaces are provided for parsing the structures above. Grammar creates only
one endpoint that parses a system and a list of instructions. Those instructions are
then executed via the library execution. A simple CLI has been implemented in the
workspace analysis, with proper error formatting for LALRPOP errors.

3.1.13 Experiments and Frequency

An experiment is a list of weights and a list of sets of same length. The sets are used as
entities given in addition to the context entities when computing the RS. The resulting
trace is then synthesized into relative frequencies. The methods offered by Frequency
and PositiveFrequency are:

• naive_frequency(sys : system) → frequency?, which computes the relative fre-
quency of each entity in all traversed states, assuming the computation is finite;

• loop_frequency(sys : system, symbol : IdType) → frequency, which computes
the relative frequency of each entity in each state of the encountered loop, assuming
the system stabilizes in a loop;

36

• limit_frequency(experiment : [set], reactions : [reaction], entities : set) →
frequency?, which computes the relative frequency of each entity in the states of
the last loop by providing repeatedly the sets in the experiment until the system
stabilizes in a loop;

• fast_frequency(experiment : [set], reactions : [reaction], entities : set,
weights : [int]) → frequency?, which computes the weighted relative frequency
of each entity in any of the loops.

Experiment ::= Weights : W Sets : S

W ::= i, W
| i
| ε

S ::= s, S
| s
| ε

Where
s is a sets of entities, see 3.1
i ∈ Z
ε is the empty string

Syntax 3.17: Syntax for Experiment

3.1.14 Instructions

The command line interface provided by the workspace analysis expects as input a
path to a file with a RS and some instructions, reads the file, executes the instructions
and returns the result in the forms specified. The syntax for specifying instructions is
as follows:

Instructions ::= System Is
| Deserialize (path) Is

Is ::= I, Is
| I
| ε

Where
ε is the empty string

Syntax 3.18: Syntax for Instructions

37

I ::= Stats > so
| Target > so
| Target (Limit :i) > so
| Run > so
| Run (Limit :i) > so
| Loop (el) > so
| Frequency > so
| LimitFrequency ("path") > so
| FastFrequency ("path") > so
| Digraph > gso
| Digraph group > gso
| Bisimilarity ("path") relabel relabel > so

gso ::= g | gso
| g

g ::= Dot
| NodeDisplay
| EdgeDisplay
| NodeColor
| EdgeColor
> so

| GraphML
| NodeDisplay
| EdgeDisplay
> so

| Serialize("path")
so ::= Print; so

| Print
| Save ("path"); so
| Save ("path")

Where
path is a path to a file
NodeDisplay follows the syntax from 3.12
EdgeDisplay follows the syntax from 3.13
NodeColor follows the syntax from 3.14
EdgeColor follows the syntax from 3.15
group is a group function with syntax from 3.16
relabel is a relabel function with syntax from 3.16
i ∈ N
el is a string that symbolizes an element
path is a path to a file

Syntax 3.18: Syntax for Instructions (Continued)

38

The instruction Stats returns static information and statistics about the system.
Target and Run return the results of the function with the same name defined in section
3.1.7. Loop returns the result of the function lollipops_only_loop_named described
in the same section. Frequency returns the results of naive_frequency as described in
section 3.1.13. LimitFrequency and FastFrequency require a path to an experiment,
with syntax described in 3.1.13, and they return the result of limit_frequency and
fast_frequency respectively. Digraph may take a function group that groups together
nodes that have the same output, described in section 3.1.11. The graphs can be either
saved as a Dot or GraphML file or serialized directly. Bisimilarity takes a path to
another instruction file, whose instructions are ignored, and returns if the two systems
are bisimilar. The results can be saved to a file or print to screen or both.

3.2 ReactionSystemsGUI
During development of ReactionSystems, a need for a more intuitive interaction with the
structures presented itself. Since all the operations on the types where already limited
and structured, a visual programming language was chosen as the best fit.

The library egui_node_graph2[28] was chosen since it offered customizability, per-
formance and ease of programming. The library unfortunately lacked compatibility with
the most recent version of egui[13], so it is included as a workspace and modified to fit
better the need of the project. This way a couple of visual bugs present in the original
code have also been fixed.

egui_node_graph2 is based on the library egui, which is an immediate mode GUI. It
differentiate itself from retained mode GUIs by having all the elements specified at every
frame; this eases programming at the expense of performance. The trade-off is favorable
since most of the computation will be on the algorithms over RS and the number of
elements of the UI will remain small in most cases.

All the functions previously described are available as “nodes” in the GUI program.
Each takes one or more inputs, colored by type, and prevents wrong types from connect-
ing, reducing user error when connecting similarly colored types.

Since at every step all of the GUI is recalculated, a robust cache structure is needed.
The cache developed keeps track of the modified nodes and only recomputes if necessary,
exploiting the structure of the graph.

The library egui_node_graph2 was also chosen for its ability to create a web appli-
cation directly from Rust code. The web application is limited; there is no interaction
with the file system and no true multi-threading. These limitations are imposed by
WebAssembly itself, not by the transpilation from Rust.

The native application executes the expressed instructions in a separate thread and
returns the result to the GUI thread to be displayed. Thus the web application may
“freeze” and become unresponsive with long calculations.

Both native and web applications have the ability to save the current state and
resume. The saved state is stored in the browser cache in the web application and in
special directories in the native one:

39

0 8 16 24 32 40 48 56 63

Version Number
State Length

Translator Length

Cache Length

 Size

State

Translator

Cache

Figure 3.2: Save file structure

• Linux: /home/UserName/.local/share/Reaction-Systems
• macOS: /Users/UserName/Library/Application Support/Reaction-Systems
• Windows: C:\Users\UserName\AppData\Roaming\Reaction-Systems\data

The native application also has the ability to save and load the state from a file. The
files have by default the extension “.ron”. The web version has no ability to interact
with the file system due to a limitation of WebAssembly.

The file structure can be seen in figure 3.2, where “state” refers to the state of the
GUI, “translator” refers to the Translator structure used to encode entities names into
fixed sized integers, and “cache” refers to the cache structure for the GUI. Version number
is a little-endian u64 that encodes the version number of the application; if different from
the version of the application, a warning will be issued, but the application will try and
load the state anyway. Each “length” field is a little-endian u64 and indicates the length
in bytes of the corresponding field.

The user can request the result of a computation by interacting with the button “Set
active” under most of the windows. A panel on the right of the screen appears with
the computed result. The nodes “Save string to file”, “Save SVG” and “Save Rasterized
SVG” instead have a button “Write” that writes to file the result. The node “Read a file”
has an extra button “Update file” that reads again the file from disk since a filewatcher
has not been implemented.

Since the generated graphs were often times immediately converted to DOT files
and rendered to SVG, a native renderer is included that can create PNG images of
the supplied graph. They are then rendered to screen. This reduces greatly the time
switching between software to achieve the same result.

40

Error Structure that holds error messages
String A string
Path A path to a file
Svg A structure for creating and rendering SVG
PositiveInt Integer in N
Symbol A single symbol, see section 3.1.1
System see section 3.1.7
Environment see section 3.1.6
Set see section 3.1.2
Context see section 3.1.4
Reactions see section 3.1.3
Experiment see section 3.1.13
PositiveSystem see section 3.1.7
PositiveEnvironment see section 3.1.6
PositiveSet see section 3.1.2
PositiveContext see section 3.1.4
PositiveReactions see section 3.1.3
Trace see section 3.1.10
PositiveTrace see section 3.1.10
Graph see section 3.1.9
PositiveGraph see section 3.1.9
DisplayNode see section 3.1.9
DisplayEdge see section 3.1.9
ColorNode see section 3.1.9
ColorEdge see section 3.1.9
AssertFunction see section 3.1.11
GroupFunction see section 3.1.11
PositiveAssertFunction see section 3.1.11
PositiveGroupFunction see section 3.1.11

Table 3.19: Types in ReactionSystemsGUI with associated color.

41

String Creates a string
Path Creates a path from a string

Read file Reads a file into a string
Save string to file Save a string to a file

Symbol Creates a symbol from a string
Sleep Waits for selected number of seconds

Dot file to SVG Parses a Dot file string into an SVG
Save SVG Saves an SVG

Save Rasterized SVG Saves an SVG as a picture
Create System Creates system from string

Create Positive System Creates positive system from system

Compose System
Composes system from
individual structures

Compose Positive System

Decompose System
Decomposes system
into individual structures

Decompose Positive System

Environment

Positive Environment

Set

Positive Set

Context

Positive Context

Reactions

Positive Reactions

Convert to Positive Environment

Convert to Positive Set

Convert to Positive Context

Convert to Positive Reactions

Statistics

Table 3.20: Available nodes in ReactionSystemsGUI with inputs and outputs in color.

Continued on next page

42

(Continued)
Target

Target of Positive RS

Run

Run of Positive RS

Loop
Applies function
lollipops_only_loop_named to RS

Loop of Positive RS

Create Experiment Creates experiment from string
Frequency

Frequency of Positive RS

Limit Frequency

Limit Frequency of Positive RS

Fast Frequency

Fast Frequency of Positive RS

Graph System Creates digraph of RS
Graph Positive System

Create Dot file Creates Dot file from a graph
Create Dot file

of Positive System

Create GraphML file Creates GraphML file from a graph
Create GraphML file
of Positive System

Display node function

Display edge function

Color node function

Color edge function

Bisimilarity Kanellakis & Smolka

Bisimilarity Kanellakis & Smolka
for Positive RS

Bisimilarity Paige & Tarjan

Table 3.20: Available nodes in ReactionSystemsGUI with inputs and outputs in color.

Continued on next page

43

(Continued)
Bisimilarity Paige & Torjan

for Positive RS

Bisimilarity Paige & Tarjan
(ignore labels)

Bisimilarity Paige & Torjan
(ignore labels) for Positive RS

Create relabeling edge function

Create relabeling edge function
for Positive RS

Trace

Positive Trace

Slice Trace

Positive Slice Trace

Trace to string

Positive trace to string

Overwrite context entities

Overwirite reaction entities

Overwrite context entities
of Positive System

Overwrite reaction entities
of Positive System

Create Grouping Function

Group Nodes

Create Grouping Function
for Positive System

Group Nodes of Positive System

Table 3.20: Available nodes in ReactionSystemsGUI with inputs and outputs in color.

All the types can be seen in table 3.19 that are used for the node’s input and output.
Each type has a distinct color associated that is used to color the connectors between
nodes. All nodes can be seen in table 3.20. The second column holds the color of the
inputs types used; the third column holds the color of the outputs types.

44

Chapter 4

Development

4.1 ReactionSystems

4.1.1 Entities and Translator

Entities are declared in the file element.rs and the Translator struct is implemented
in the file translator.rs.

Entities have type IdType and are represented as u32. Representing arbitrarily
named entities with integers has the immediate benefit of faster code execution, but need
additional support for the encoding and decoding. Also it does not permit easy merging
of different systems. This is because two elements with the same string might be assigned
to a different integer and would need to be re-encoded. The ReactionSystemsGUI solves
this problem by having only one Translator class for all entities and systems.

Positive RS have the property that if all the entities are declared in the initial state,
in all subsequent states the entities will all be defined either positive or negative. This
property can be exploited in the representation of a Positive RS, however the implemen-
tation disregards this fact and simply assigns either positive or negative to each positive
entity.

The struct Translator is formed by two maps, one from strings to IdType and the
inverse, and by a counter for the last used id. It is essential for this class to be serializable,
so that the state of ReactionSystemsGUI might save it when necessary. The struct is
also used to form the structure Formatter, which is used to format all structures that
implement PrintableWithTranslator.

For example the implementation of PrintableWithTranslator for Set is the follow-
ing:

1 impl PrintableWithTranslator for Set {
2 fn print(
3 &self,
4 f: &mut fmt::Formatter,
5 translator: &Translator,
6) -> fmt::Result {

45

https://github.com/elvisrossi/ReactionSystems/blob/master/rsprocess/src/element.rs
https://github.com/elvisrossi/ReactionSystems/blob/master/rsprocess/src/translator.rs

7 write!(f, "{{")?;
8 let mut it = self.iter().peekable();
9 while let Some(el) = it.next() {

10 if it.peek().is_none() {
11 write!(f, "{}", Formatter::from(translator, el))?;
12 } else {
13 write!(f, "{}, ", Formatter::from(translator, el))?;
14 }
15 }
16 write!(f, "}}")
17 }
18 }

The structure Translator is only borrowed because it is never modified when print-
ing, so only one is needed for all of the print. On lines 11 and 13 instead of directly
printing el, we first construct another Formatter struct and require only for that struct
to implement std::fmt::Display. This gives modularity and flexibility to the display
system.

4.1.2 Set

The structure set, implemented in the file set.rs, is a key component for all functions
in the library. It is realized as a binary tree set[26]. Binary trees were chosen instead of
hash sets for various reasons: binary trees support hashing of the whole tree, hash sets
do not; the penalty for retrieval of individual elements is offset by the performance gain
for set operations like union or intersection.

4.1.3 Reaction

A reaction is a collection of sets, reactants, inhibitors and products for RS and just
reactants and products for Positive RS. Since converting between reactions and positive
reactions is meaningless for single reactions, we provide a method called

into_positive_reactions(reactions : [reactions]) → [positive reactions]

that takes a vector of reactions and calculates the prohibiting set and minimizes. The
code is available in the file reactions.rs.

4.1.4 Process, Choices and Environment

Context processes, available in process.rs, have been implemented as trees. Each
pointer to the next process is an Arc[25] so that they may be used in concurrent appli-
cations, like ReactionSystemsGUI. There is no need for interior mutability, so no mutex
or semaphore is used. The name of variables used to identify environment processes
are converted like entities from strings to integers and they are handled by Translator,
since there no reason was found to distinguish them.

46

https://github.com/elvisrossi/ReactionSystems/blob/master/rsprocess/src/set.rs
https://github.com/elvisrossi/ReactionSystems/blob/master/rsprocess/src/reaction.rs
https://github.com/elvisrossi/ReactionSystems/blob/master/rsprocess/src/process.rs

The structure Choices is available in choices.rs; Environment is available in file
environment.rs.

Environment has been implemented as a binary tree like sets, in order to be able
to hash them; even tho no set operations are needed, the performance penalty is small
enough.

4.1.5 System

Systems are implemented in the file system.rs. Systems are composed by an environ-
ment, a set of initial entities, a process and a vector of reaction rules. Two other private
fields are used: context_elements and products_elements. They hold the set of enti-
ties that concern context and the ones that concert the products, such that their union
is equal to all the entities available to the system and their intersection is the empty set.
These two fields are not public since their computation may be particularly expensive,
but is not needed for most of the calculations. So it would be wasteful to compute when
creating the system and would be unwieldy to cache the result in every function that
uses the results. The choice was to make System as a structure with interior mutability.
This property is checked by the Rust compiler and forbids one from using the structure
in hash maps or binary trees. But since we know that these two fields are completely
determined by the other four, we ignore them when calculating the hash and assure the
compiler of their stability in the file clippy.toml, where it is specified that both System
and PositiveSystem are to be ignored.

Since the automatic assignment to context or product element can be erroneous,
nodes to overwrite these values are available in ReactionSystemsGUI.

The two key functions to_transition_iterator and to_slicing_iterator specify
that they return an iterator, a lazy structure with a next method for obtaining the
following value. This is to allow for a more efficient implementation in cases where not
all states are needed.

4.1.6 Label

Labels have been implemented in the file label.rs. Since their primary function is to
hold redundant but useful data for other computations, they do not need any algorithms
to be implemented directly in their interface.

The structure for a label is:

pub struct Label {
pub available_entities: Set,
pub context: Set,
pub t: Set,
pub reactants: Set,
pub reactants_absent: Set,
pub inhibitors: Set,
pub inhibitors_present: Set,

47

https://github.com/elvisrossi/ReactionSystems/blob/master/rsprocess/src/choices.rs
https://github.com/elvisrossi/ReactionSystems/blob/master/rsprocess/src/environment.rs
https://github.com/elvisrossi/ReactionSystems/blob/master/rsprocess/src/system.rs
https://github.com/elvisrossi/ReactionSystems/blob/master/clippy.toml
https://github.com/elvisrossi/ReactionSystems/blob/master/rsprocess/src/label.rs

pub products: Set,
}

where t is defined as t := available_entities∪ context. Since t can be uniquely
derived from other fields it is ignored when calculating equality or the hash of the label.
Positive labels have a similar structure, with PositiveSet instead of Set in all of the
fields.

4.1.7 Graph

Graphs for RS and Positive RS are declared as

pub type SystemGraph = Graph<System, Label, Directed, u32>;

and

pub type PositiveSystemGraph =
Graph<PositiveSystem, PositiveLabel, Directed, u32>;

in the file graph.rs, where Graph is from the library petgraph[5]. This was done
to leverage the traits provided already by the external library. Graph<N, E, Ty, Ix>
takes four generic parameters:

• Associated data N for nodes and E for edges, called weights. The associated data
can be of arbitrary type;

• Edge type Ty that determines whether the graph edges are directed or undirected;
• Index type Ix, which determines the maximum size of the graph.

The index type was chosen to be u32 to balance performance with maximum size of
the graph.

The library already provides methods to export the graphs in Dot and GraphML
formats, but the Dot export did not meet all the requirements and has been partially
rewritten in dot.rs. The biggest difference is in the function graph_fmt, which has
been simplified and made more ergonomic for specifying color of text and background.

As described in subsection 3.1.9, four structures for specifying the display properties
of the Dot and GraphML format have been designed. The implementation closely follows
the design description, but results in a lot of boilerplate code that can be seen in the file
format_helpers.rs, helped slightly by custom macros.

The four structures — NodeDisplay, EdgeDisplay, NodeColor, and EdgeColor —
all have the generate and generate_positive methods, which convert the relative
structure into an executable function that can be used when creating Dot or GraphML
documents. No unified trait has been defined since the functions returned have different
types and the use for this trait may be limited.

48

https://github.com/elvisrossi/ReactionSystems/blob/master/rsprocess/src/graph.rs
https://github.com/elvisrossi/ReactionSystems/blob/master/rsprocess/src/dot.rs
https://github.com/elvisrossi/ReactionSystems/blob/master/rsprocess/src/format_helpers.rs

4.1.8 Slicing Trace

Since traces are only lists of states, often no type associated with them is provided; some
trace types are present in trace.rs. Of particular interest is the structure
SlicingTrace<S, R, Sys>. Instead of using traits, it was more convenient to use
generic type parameters for the slices structures. For both RS and Positive RS the
method slice faithfully implements the algorithm described in section 2.3.3. A new
slice structure is returned because often the previous slice might get reused as input to
other slicings. This occurs in a minor performance penalty if only one slice is requested.

4.1.9 Bisimilarity and Bisimulation

The algorithms described in section 2.4 are implemented in the files in the folder bisimilarity/src.
They are implemented for arbitrary graphs that satisfy some traits defined in the library
petgraph. For example from file bisimilarity_kanellakis_smolka.rs:

pub fn bisimilarity<'a, G>(graph_a: &'a G, graph_b: &'a G) -> bool
where

G: IntoNodeReferences + IntoEdges,
G::NodeId: std::cmp::Eq + std::hash::Hash,
G::EdgeWeight: std::cmp::Eq + std::hash::Hash + Clone,

The generic parameter G has to satisfy IntoNodeReferences + IntoEdges but is
not constrained to be a Graph and could be for example a StableGraph or a GraphMap.
In this way code portability is maximized.

4.1.10 Assert

As described in 3.1.11, a custom language has been developed for the purpose of mod-
ifying the graphs. The code is available in the folder assert/src. The implemented
language can be seen as just one function that will be executed on each node or edge of
the graph. The return value of the function will be used to group or relabel the input
values. For this purpose a structured statically-typed interpreted language with global
variables declarations. The choices make evaluating the language very lightweight and
since the programs are usually very short, its not detrimental to the user experience.

Typechecking is done only over operator arguments, range definition and return
statements. For example the program

node {
if node.system.SystemEntities > {p0} then {

return 0;
}
if node.system.SystemEntities > {p1} then {

return false;
}

49

https://github.com/elvisrossi/ReactionSystems/blob/master/rsprocess/src/trace.rs
https://github.com/elvisrossi/ReactionSystems/tree/master/bisimilarity/src
https://github.com/elvisrossi/ReactionSystems/blob/master/bisimilarity/src/bisimilarity_kanellakis_smolka.rs
https://github.com/elvisrossi/ReactionSystems/tree/master/assert/src

if node.system.SystemEntities > {p2} then {
return 2;

}
return 3;

}

would return an error since return statements don’t agree on type returned. But the
program

node {
if node.system.SystemEntities > {p0} then {

return 0;
}
if node.system.SystemEntities > {p1} then {

return 1;
}
if node.system.SystemEntities > {p2} then {

return 2;
}

}

would satisfy the typechecker, even tho not all applications will return a value. This
error will only be caught executing.

4.1.11 Grammar

The code for the unified grammar is available in the folder grammar/src and the code for
the separated grammar is available in the folder grammar_separated/src. The parser
generator code has been placed in separate workspaces so that compilation time may
be reduced. The Rust compiler sequentially compiles each file in the same workspace,
and if one file is modified, all other files must be re-linked. By separating into differ-
ent workspaces the computation is parallelized and modifying a file results only in the
workspace being recompiled. The workspaces for the grammar are particularly slow to
compile and required this treatment.

LALRPOP library allows for user specific errors to be declared. Only two have been
employed, NumberTooBigUsize and NumberTooBigi64, since the default error messaging
was adequate. Custom error display has been implemented in file helper.rs which
creates error messages with color and that highlight the erroneous part of the input. For
example the specification of the example in subsection 2.1.1 is the following:

Environment: []
Initial Entities: {p1,p3}
Context: [{}.{inc}.{inc}.{dec}.{dec,inc}.nill]
Reactions: (

...
)

50

https://github.com/elvisrossi/ReactionSystems/tree/master/grammar/src
https://github.com/elvisrossi/ReactionSystems/tree/master/grammar_separated/src
https://github.com/elvisrossi/ReactionSystems/blob/master/analysis/src/helper.rs

If we omit the last dot in the context:

Context: [{}.{inc}.{inc}.{dec}.{dec,inc}nill]

we obtain the following error message:

Unrecognized token "nill"between positions 82 and 86.
Expected: (".")
Line 3 position 40 to 44:
3 |Context: [{}.{inc}.{inc}.{dec}.{dec,inc}nill]

| ^ ^

During parsing the symbols are immediately encoded with Translator when appro-
priate. This was made possible by passing state parameter, Translator, to the parser.

The code for the unified grammar is mirrored in the separate grammar, where every
parser is available to use. This was done because the code generated by the parser
generator could grow very large for very nested public functions. By reducing the number
of public functions, this problem is mitigated.

4.2 ReactionSystemsGUI
To build an application with egui, a struct that implements eframe::App is needed. The
methods implemented this way will be called by the internal engine when the GUI will
need to be repainted. Since the update function will be called numerous times every
second, it is important that expensive calculations be cached for subsequent frames.
Since all the heavy computations concern only the RS, a cache is developed that assigns
to each node’s output the cached value. The cache also has hashes for the previous
inputs that speed up comparisons when deciding if a value is still valid or should be
replaced.

struct CacheInternals {
values: HashMap<OutputId, BasicValue>,
hash_values: HashMap<OutputId, u64>,
hash_inputs: HashMap<OutputId, (u64, Vec<u64>)>,
last_output: Option<BasicValue>,

}

where OutputId is the type of the output of the nodes, BasicValue is the type of the
possible values computed in the nodes and hashes are stored as u64. hash_inputs
contains both a hash and a list of hashes. The first refers to the xor of the latter, and
is used to quickly check if all the inputs are unchanged. Any interaction with the node
structure or with the text fields invalidates the appropriate entries in the cache.

Every time an update to the values of the nodes is requested, a new thread is started
so that the GUI thread can resume. Then every other node that is connected to the

51

inputs of the node that is focused, and for which the output needs to be calculated, is
scanned and added to a queue if the outputs are not cached. Finally, for each node,
the function process_template creates the outputs and populates the cache. When the
last node has been worked out, the thread terminates and the GUI thread displays the
result.

The library defines which types are possible outputs of a node in the structure
BasicDataType and BasicValue, then declares the types of nodes in the structure
NodeInstruction. 29 types and 72 instructions have been implemented. Each type
has a color associated with it, that is used to paint endpoints with the type and connect-
ing curves between nodes. Nodes are organized in categories and can be added with right
click of the mouse. The canvas can be zoomed and panned, helping the user organize
the nodes.

An peculiar node is the “String to SVG” one. It takes a Dot file as string as an input
and outputs an SVG value. The string is first parsed as an Dot file using the library
layout[21], then the resulting graph is converted to a tree that represents an SVG. Then
it is converted into string to be able to be parsed again by the library resvg[23]. Finally
an image buffer is allocated and the tree is rendered on the pixel map. Since egui library
is not optimized to display arbitrary images, the pixel map is then converted to texture
so that it may be cached more easily. To save on space the texture is not serialized and
is recomputed when needed. The result can be either displayed on screen or saved as a
PNG image.

The code for the render of SVG files is implemented in svg.rs.
The entry point for the native application is in the file main.rs and the entry point

for the web application is web.rs. To interface with WebAssembly, only three functions
are strictly needed: new, start and destroy. These functions are translated to wasm
and used as bindings for JavaScript.

To build for web first we invoke the Rust compiler with the command

cargo build -p "reaction_systems_gui" --release --all-features
--lib --target wasm32-unknown-unknown

that builds for the target wasm32. Then using wasm-bindgen[11] we create the
appropriate bindings with the command

wasm-bindgen "[..]/reaction_systems_gui.wasm" --out-dir docs
--no-modules --no-typescript

As an additional step we optimize using wasm-opt from the library binaryen[3] with

wasm-opt "[..]/reaction_systems_gui_bg.wasm" -O2 --fast-math
-o "[..]/reaction_systems_gui_bg.wasm"

The code can then be served statically and used in a HTML canvas. Bash scripts
are provided that automates this process: build_web.sh and start_server.sh.

52

https://github.com/elvisrossi/ReactionSystemsGUI/blob/main/reaction_systems_gui/src/svg.rs
https://github.com/elvisrossi/ReactionSystemsGUI/blob/main/reaction_systems_gui/src/main.rs
https://github.com/elvisrossi/ReactionSystemsGUI/blob/main/reaction_systems_gui/src/web.rs
https://github.com/elvisrossi/ReactionSystemsGUI/blob/main/reaction_systems_gui/build_web.sh
https://github.com/elvisrossi/ReactionSystemsGUI/blob/main/reaction_systems_gui/start_server.sh

Chapter 5

Testing and Validation

5.1 Tests
During the development of the library some tests were developed in order to test behavior
in the changing code. They can be run with cargo test. Tests don’t cover all code
branches, but have been written for pieces of code that might break more easily. Tests
are usually present in a separate file as the structure declaration and have the suffix
“_test.rs” in their name, so that they might be easily recognized.

For example in the workspace bisimilarity tests have been written for the algo-
rithms implemented.

#[test]
fn bisimilar_paige_tarjan_3() {

use petgraph::Graph;
let mut graph_b = Graph::new();

let node_b_1 = graph_b.add_node(1);
let node_b_2 = graph_b.add_node(2);
graph_b.add_edge(node_b_1, node_b_2, 1);
let node_b_3 = graph_b.add_node(3);
graph_b.add_edge(node_b_2, node_b_3, 2);
let node_b_4 = graph_b.add_node(4);
graph_b.add_edge(node_b_3, node_b_4, 2);

let mut graph_c = Graph::new();

let node_c_1 = graph_c.add_node(1);
let node_c_2 = graph_c.add_node(2);
graph_c.add_edge(node_c_1, node_c_2, 1);
let node_c_3 = graph_c.add_node(3);
graph_c.add_edge(node_c_2, node_c_3, 2);
let node_c_4 = graph_c.add_node(4);

53

graph_c.add_edge(node_c_3, node_c_4, 2);
let node_c_5 = graph_c.add_node(5);
graph_c.add_edge(node_c_1, node_c_5, 1);
graph_c.add_edge(node_c_5, node_c_3, 2);

assert!(bisimilarity(&&graph_b, &&graph_c));
assert!(bisimilarity_ignore_labels(&&graph_b, &&graph_c))

}

The macro call #[test] instructs rust to treat the function as a test and thus generate
the respective code only when building for the test suite. Then the two graphs are
constructed; finally the results are tested with the assert! macro.

The structure of the two graph can be seen in figure 5.1.

Figure 5.1: Graphs of tests

The behavior of the two systems is the same by ignoring the labels on the edges and
by considering them, so they are always bisimilar, so the test should not panic.

The graphs have been generated using ReactionSystemsGUI using the nodes dis-
played in figure 5.2. Note that to differentiate the two edges exiting node-1 additional
entities left and right are used, but are not displayed because the function for dis-
playing the edges masks only for edge-1 and edge-2.

54

Figure 5.2: Generating graphs using ReactionSystemsGUI

In addition to automated tests, some example inputs are provided in the folder
testing. The extension .system symbolizes system and associated instructions; the
extension .experiment symbolizes an experiment, see 3.1.13.

These examples were also used to do manual integration testing.
The example target.system generates as output:

After 6 steps we arrive at state:
{b}
After 6 steps we arrive at state:
{b}

55

https://github.com/elvisrossi/ReactionSystems/tree/master/testing

Environment: [x = {a}.y, y =({a}.{a, b}.nill + {b}.nill)]
Initial Entities: {a, b}
Context: [({a,b}.{a}.{a,c}.x + {a,b}.{a}.{a}.nill)]
Reactions: ([{a,b}, {c}, {b}])

Target > Print,
Target (Limit: 7) > Print,
Target (Limit: 6) > Print,
Target (Limit: 5) > Print

After 6 steps we arrive at state:
{b}
After 5 steps we arrive at state:
{}

The output is correct since, as we can see from the graph of the system in figure 5.4
that the system has as leftmost production six states and the end state has entities set
{b}.

Figure 5.4: Graph of example 5.3a, nodes have available entities as label, edges have the
entities provided by the context as labels.

A small Perl script is provided that can convert systems created for the Prolog version

56

of the program into the syntax described in 3.1.7. The script was used to convert systems
that model mutual exclusion (MEX) available in the folder testing/mex.

A MEX system is composed of n looping processes, which only one can be in the
critical section. Each process is identified by out_i if is out of the critical section, req_i
if has requested to enter the critical section and in_i if is in the critical section. Without
the token act_i no process can change state:

[{out_1}, {act_1}, {out_1}];
[{req_1}, {act_1}, {req_1}];
[{in_1}, {act_1}, {in_1}];

And act_i is required to change state:

[{out_1, act_1}, {}, {req_1}];

Any subset of processes can be activated, the requests are preserved:

[{req_1, act_1, act_2}, {}, {req_1}];
[{req_1, act_1, act_3}, {}, {req_1}];
...
[{req_1, act_1, act_n}, {}, {req_1}];

Entering the critical section is handled by two other entities: lock, which symbolizes
that a process is in the critical section, and done, which symbolizes that the critical
section has been exited. lock remains until done:

[{lock}, {done}, {lock}];

No other processes have to have the lock for a process to enter the critical section:

[{req_1,act_1},{lock,act_2,...,act_n},{in_1,lock}];

The execution of these examples is more computationally expensive with increasing
n. The execution of mex10.system took 78791.202 milliseconds to run the instruction
5.1 which generate the graph of the system, converts it to dot format and saves it.

Digraph > Dot
| Entities
| Context
| ! "white"
| ! "black"
> Save("out.dot")

Instruction 5.1: Instruction for MEX systems.

mex5.system takes instead 109.148 milliseconds to run.

57

https://github.com/elvisrossi/ReactionSystems/tree/master/testing/mex

Flame Graph

al..

al..

alloc:..

alloc::co..

alloc::co..

c..

<alloc::collections::b..

alloc::collect..

al..

c..

<..

a..

[lib..

<alloc::vec::Vec<T> a..

<alloc::vec::Vec<T..

al..

al..

al..

al..

al..

a..

c..

c..

c..

c..

<r..

al..

<..

a..

<a..

c..

c..

<rsproces..

<core::sl..

<rsproces..

<a.. <all..

al..

al..

co..

c..

c..

alloc::..

[l..

[l..

alloc::collecti..

allo..

allo..

allo..

allo..

allo..

<all..

allo..

allo..

allo..

allo..

allo..

<all..

allo..

cf..

alloc::..

a..

a..

a..

c..

a..

[unknown] alloc::..

c..

c..

c..

c..

<..

c..

<..

c..

<..

a..

<..

a..

c..

al..

a..

a..

a..

a..

a..

a..

a..

<..

a..

c..

alloc::colle..

allo..

a..

an..

<a..

<a..

analysis

Figure 5.5: Flamegraph of MEX RS with 5 processes.

Flame Graph

all..

all..

alloc::..

alloc::collec..

alloc::collec..

cor..

<alloc::collections::bt..

alloc::collection..

al.. <a..

al..

[li.. a..

a..

a..

a..

a..

<alloc::vec::..

<alloc::vec::V.. <r..

al..

co..

co..

<allo..

<rsproces..

<core::sli..

<rsprocess..

<..

a..

a..

c..

<al.. <..

<.. all..

all..

all..

<al..

all..

all..

alloc::c..

all..

all..

all..

<..

a..

c..

a..

a..

a..

alloc..

a..

a..

a..

co..

co..

co..

core::..

core::..

[unknown] alloc::collectio..

all..

all..

all..

all..

alloc::collection..

alloc..

analysis

Figure 5.6: Flamegraph of MEX RS with 10 processes.

58

Performance has been analyzed using perf[17] and flamegraph[15].
Both of the flamegraphs share distinct features, but the one regarding MEX RS with

10 processes has finer resolution since the execution time is much longer. In decreasing
order, some of the that took most samples are:

• unknown that took 29% of samples,
• alloc::collections::btree::map::IntoIter::dying_next that took 14% of

samples,
• <alloc::collections::btree::map::Iter as

core::iter::traits::iterator::Iterator>::next that took 11% of samples,
• alloc::collections::btree::append::::bulk_push that took 11% of samples,
• alloc::collections::btree::map::BTreeMap::bulk_build_from_sorted_iter

that took 5,1% of samples,
• . . .

From the perf data we can gather that parsing took less than 3% of total time, and
that unknown refers to the methods belonging to System (section 4.1.5). This behavior
is expected since most of the computation is carried by the structure that generates the
graph.

5.2 Validation
During development key issues identified from previous projects where performance and
usability. The biggest problem with Prolog software is exceeding the stack limit and
thus running out of memory. This problem is completely solved by using Rust. Another
problem was that of performance. On dot file generation a 2 to 7 times performance
improvement is seen, depending on the model simulated.

Usability has been taken into account both for an end user and for a programmer
that intend to expand the system: grammar follows general rules largely compatible
with previous projects; the grammar is decoupled from the internal representation and
thus permits greater maintainability and expandability; the use of traits permits more
modularity and the coexistence of multiple types of RS in the same project; domain
specific languages allow more efficient and intuitive instruction specification; the graph-
ical user interface presents instructions and methods over reaction systems in a more
intuitive way that with just a command line interface; the node system allows greater
modularity and for easy additions of new instructions; easy SVG generation reduce the
time spent between different software and speeds up the end user’s tasks; saving the
state of the application allows for lower friction when switching between projects; the
web GUI provides a platform agnostic interface for quick development. Thus the original
goal to develop a more user-friendly and developer-friendly reaction system modeler has
been met.

59

60

Chapter 6

Conclusion

Reaction Systems were originally conceived as a theoretical framework to model bio-
chemical processes in living cells. Applying RS theory to practical modeling tasks has
been non-trivial. The behavior of a RS can exhibit complex dynamics due to the non-
monotonic role of inhibitors. In practice the number of entities and reactions can be
large, making manual reasoning unfeasible without proper automated support.

This thesis contributes to bridging the gap between RS theory and practical use by
providing a concrete software realization of the formalism. The software is available in
the repositories ReactionSystems[19] and ReactionSystemsGUI[20].

6.1 Summary of Contributions
• New RS Modeling Platform: This thesis introduced a new software platform for

Reaction Systems modeling, analysis and design, implemented in the Rust pro-
gramming language for high performance and reliability. The software provides
both a command-line interface (CLI), native graphical user interface (GUI) and a
web based one. This enables users to model RSs either through text-based com-
mands or in an interactive visual environment.

• Comprehensive Feature Set: The tool supports a rich set of features: simulation
of RS, bisimulation of RSs, trace slicing, graph generation with multiple output
formats like Dot, GraphML and SVG, loop analysis, automated conversion between
types of RS. These features collectively offer a comprehensive toolkit for analyzing
RS behavior.

• Performance and Design: The implementation in Rust allows to maximize per-
formance, ensure safety and permit compositionality of future expansions. This
eliminates prior memory issues with implementations in Prolog and dramatically
improves execution speed. For example generating state-graph visualizations (Dot
graphs) is now up to 7 times faster than before. Beyond performance, the soft-
ware’s architecture was designed for clarity and extensibility: the RS grammar
is kept independent of internal data structures to simplify maintenance, and core
components use Rust traits to support modular extension.

61

Future work may extend current models by a more in-depth performance analysis and
optimization; may extend the methods available in the GUI; may provide new Reaction
Systems types, like Quantitative Reaction Systems[14] or Multiset Reaction Systems[6];
may provide methods to convert different structures like boolean networks into RS; or
may provide additional test coverage of the current code.

62

Bibliography

[1] Luca Aceto, Anna Ingolfsdottir, and Jirí Srba. “The algorithmics of Bisimilarity”.
In: Advanced Topics in Bisimulation and Coinduction (Sept. 2011), pp. 100–172.
doi: 10.1017/cbo9780511792588.004.

[2] Christel Baier, Joost-Pieter Katoen, and Kim Guldstrand Larsen. Principles of
model checking. MIT Press, The, 2016.

[3] binaryen: a compiler and toolchain infrastructure library for WebAssembly, written
in C++. Oct. 27, 2025. url: https://github.com/WebAssembly/binaryen.

[4] BioResolve web page, a Prolog interpreter for Reaction Systems analysis. https:
//pages.di.unipi.it/bruni/LTSRS/. 2025.

[5] Agustín Borgna. petgraph: Graph data structure library. Provides graph types and
graph algorithms. Version 0.8.3. Sept. 30, 2025. url: https : / / github . com /
petgraph/petgraph.

[6] Paolo Bottoni, Victor Mitrana, and Ion Petre. “Multiset Reaction Systems”. In:
Lecture Notes in Computer Science (2025), pp. 179–193. doi: 10.1007/978-3-
031-97274-4_11.

[7] Linda Brodo, Roberto Bruni, and Moreno Falaschi. “A logical and graphical frame-
work for Reaction Systems”. In: Theoretical Computer Science 875 (July 2021),
pp. 1–27. doi: 10.1016/j.tcs.2021.03.024.

[8] Linda Brodo et al. “Slicing analyses for negative dependencies in Reaction Systems
Modeling Gene Regulatory Networks”. In: Natural Computing (Sept. 2025). doi:
10.1007/s11047-025-10046-5.

[9] Daniel Burgener. lalrpop: convenient LR(1) parser generator. Version 0.22.2. May 22,
2025. url: https://github.com/lalrpop/lalrpop.

[10] Rance Cleaveland and Oleg Sokolsky. “Equivalence and preorder checking for finite-
state systems”. In: Handbook of Process Algebra (2001), pp. 391–424. doi: 10.1016/
b978-044482830-9/50024-2.

[11] daxpedda. wasm-bindgen: Easy support for interacting between JS and Rust. Ver-
sion 0.2.105. Oct. 27, 2025. url: https://github.com/wasm-bindgen/wasm-
bindgen.

[12] John Ellson. Graphviz is open source graph visualization software. url: https:
//graphviz.org/doc/info/lang.html.

63

https://doi.org/10.1017/cbo9780511792588.004
https://github.com/WebAssembly/binaryen
https://pages.di.unipi.it/bruni/LTSRS/
https://pages.di.unipi.it/bruni/LTSRS/
https://github.com/petgraph/petgraph
https://github.com/petgraph/petgraph
https://doi.org/10.1007/978-3-031-97274-4_11
https://doi.org/10.1007/978-3-031-97274-4_11
https://doi.org/10.1016/j.tcs.2021.03.024
https://doi.org/10.1007/s11047-025-10046-5
https://github.com/lalrpop/lalrpop
https://doi.org/10.1016/b978-044482830-9/50024-2
https://doi.org/10.1016/b978-044482830-9/50024-2
https://github.com/wasm-bindgen/wasm-bindgen
https://github.com/wasm-bindgen/wasm-bindgen
https://graphviz.org/doc/info/lang.html
https://graphviz.org/doc/info/lang.html

[13] Emil Ernerfeldt. egui: An easy-to-use immediate mode GUI that runs on both web
and native. Version 0.33.2. Nov. 13, 2025. url: https://github.com/emilk/egui.

[14] Victor Mitrana et al. “Quantitative reaction systems”. In: 2025 5th International
Conference on Innovative Research in Applied Science, Engineering and Technology
(IRASET) (May 2025), pp. 1–6. doi: 10.1109/iraset64571.2025.11008263.

[15] Dirkjan Ochtman. flamegraph: A simple cargo subcommand for generating flamegraphs,
using inferno under the hood. Version 0.6.10. Nov. 7, 2025. url: https://github.
com/flamegraph-rs/flamegraph.

[16] Robert Paige and Robert E. Tarjan. “Three partition refinement algorithms”.
In: SIAM Journal on Computing 16.6 (Dec. 1987), pp. 973–989. doi: 10.1137/
0216062.

[17] perf(1) — Linux manual page. 6.17-2. Nov. 2025.
[18] WebAssembly Core Specification. Version 2.0. W3C, Sept. 14, 2025. url: https:

//www.w3.org/TR/wasm-core-2/.
[19] Elvis Rossi. ReactionSystems. https://github.com/elvisrossi/ReactionSystems.

2025.
[20] Elvis Rossi. ReactionSystems. https://github.com/elvisrossi/ReactionSystemsGUI.

2025.
[21] Nadav Rotem. layout-rs: A graph visualization program. Version 0.1.3. Apr. 24,

2025. url: https://github.com/nadavrot/layout.
[22] Grzegorz Rozenberg and Joost Engelfriet. “Elementary Net Systems”. In: Lecture

Notes in Computer Science (1998), pp. 12–121. doi: 10.1007/3-540-65306-6_14.
[23] Laurenz Stampfl. resvg: An SVG rendering library. Version 0.45.1. Apr. 17, 2025.

url: https://github.com/linebender/resvg.
[24] The GraphML Team. GraphML is a comprehensive and easy-to-use file format for

graphs. url: http://graphml.graphdrawing.org/.
[25] The Rust teams. A thread-safe reference-counting pointer. ‘Arc’ stands for ‘Atom-

ically Reference Counted’. url: https://doc.rust-lang.org/std/sync/struct.
Arc.html.

[26] The Rust teams. An ordered set based on a B-Tree. url: https://doc.rust-
lang.org/std/collections/struct.BTreeSet.html.

[27] The Rust teams. Rust Programming Language. url: https://rust-lang.org/.
[28] trevyn. egui_node_graph2: A helper library to create interactive node graphs using

egui. Version 0.7.0. Nov. 3, 2024. url: https://github.com/trevyn/egui_node_
graph2.

64

https://github.com/emilk/egui
https://doi.org/10.1109/iraset64571.2025.11008263
https://github.com/flamegraph-rs/flamegraph
https://github.com/flamegraph-rs/flamegraph
https://doi.org/10.1137/0216062
https://doi.org/10.1137/0216062
https://www.w3.org/TR/wasm-core-2/
https://www.w3.org/TR/wasm-core-2/
https://github.com/elvisrossi/ReactionSystems
https://github.com/elvisrossi/ReactionSystemsGUI
https://github.com/nadavrot/layout
https://doi.org/10.1007/3-540-65306-6_14
https://github.com/linebender/resvg
http://graphml.graphdrawing.org/
https://doc.rust-lang.org/std/sync/struct.Arc.html
https://doc.rust-lang.org/std/sync/struct.Arc.html
https://doc.rust-lang.org/std/collections/struct.BTreeSet.html
https://doc.rust-lang.org/std/collections/struct.BTreeSet.html
https://rust-lang.org/
https://github.com/trevyn/egui_node_graph2
https://github.com/trevyn/egui_node_graph2

	Introduction
	Software Design and Key Features

	Background
	Reaction Systems
	Example: A binary counter
	Simple loops

	SOS rules for reaction systems
	Positive Reaction Systems
	From RSs to Positive RSs
	Minimization
	Slicing

	Bisimulation
	Algorithms for evaluating bisimulation

	Design
	ReactionSystems
	Entities and Translator
	Set
	Reaction
	Process
	Choices
	Environment
	System
	Label
	Graph
	Slicing Trace
	Bisimilarity and Bisimulation
	Grammar and Separated Grammar
	Experiments and Frequency
	Instructions

	ReactionSystemsGUI

	Development
	ReactionSystems
	Entities and Translator
	Set
	Reaction
	Process, Choices and Environment
	System
	Label
	Graph
	Slicing Trace
	Bisimilarity and Bisimulation
	Assert
	Grammar

	ReactionSystemsGUI

	Testing and Validation
	Tests
	Validation

	Conclusion
	Summary of Contributions

