Files
cmdla/Lessons/11-09/SDG.jl

424 lines
12 KiB
Julia
Raw Permalink Normal View History

2023-11-17 12:42:12 +01:00
using LinearAlgebra, Printf, Plots
function SDG(f;
x::Union{Nothing, Vector}=nothing,
astart::Real=1,
eps::Real=1e-6,
MaxFeval::Integer=1000,
m1::Real=1e-3,
m2::Real=0.9,
tau::Real=0.9,
sfgrd::Real=0.01,
MInf::Real=-Inf,
mina::Real=1e-16,
plt::Union{Plots.Plot, Nothing}=nothing,
plotatend::Bool=true,
Plotf::Integer=0,
printing::Bool=true)::Tuple{AbstractArray, String}
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# local functions - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
function f2phi(alpha, derivate=false)
lastx = x .- alpha .* g
(phi, lastg, _) = f(lastx)
if (Plotf > 2)
if fStar > -Inf
push!(gap, (phi - fStar) / max(abs(fStar), 1))
else
push!(gap, phi)
end
end
feval += 1
if derivate
return phi, dot(-g, lastg)
end
return phi, nothing
end
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
function ArmijoWolfeLS(phi0, phip0, as, m1, m2, tau)
# performs an Armijo-Wolfe Line Search.
#
# Inputs:
#
# - phi0 = phi( 0 )
#
# - phip0 = phi'( 0 ) (< 0)
#
# - as (> 0) is the first value to be tested: if the Armijo condition
#
# phi( as ) <= phi0 + m1 * as * phip0
#
# is satisfied but the Wolfe condition is not, which means that the
# derivative in as is still negative, which means that longer steps
# might be possible), then as is divided by tau < 1 (hence it is
# increased) until this does not happen any longer
#
# - m1 (> 0 and < 1, typically small, like 0.01) is the parameter of
# the Armijo condition
#
# - m2 (> m1 > 0, typically large, like 0.9) is the parameter of the
# Wolfe condition
#
# - tau (> 0 and < 1) is the increasing coefficient for the first phase
# (extrapolation)
#
# Outputs:
#
# - a is the "optimal" step
#
# - phia = phi( a ) (the "optimal" f-value)
lsiter = 1 # count iterations of first phase
local phips, phia
while feval MaxFeval
(phia, phips) = f2phi(as, true) # compute phi( a ) and phi'( a )
if phia > phi0 + m1 * as * phip0 # Armijo not satisfied
break
end
if phips m2 * phip0 # Wolfe satisfied
if printing
@printf("%2d ", lsiter)
end
a = as
return (a, phia) # Armijo + Wolfe satisfied, done
end
if phips 0 # derivative is positive, break
break
end
as = as / tau
lsiter += 1
end
if printing
@printf("%2d ", lsiter)
end
lsiter = 1 # count iterations of second phase
am = 0
a = as
phipm = phip0
while (feval MaxFeval) && ((as - am) > abs(mina)) && (abs(phips) > 1e-12)
if (phipm < 0) && (phips > 0)
# if the derivative in as is positive and that in am is negative,
# then compute the new step by safeguarded quadratic interpolation
a = (am * phips - as * phipm) / (phips - phipm)
a = max(am + ( as - am ) * sfgrd, min(as - ( as - am ) * sfgrd, a))
else
a = (as - am) / 2 # else just use dumb binary search
end
phia, phipa = f2phi(a, true) # compute phi( a ) and phi'( a )
if phia phi0 + m1 * as * phip0 # Armijo satisfied
if phipa m2 * phip0 # Wolfe satisfied
break # Armijo + Wolfe satisfied, done
end
am = a # Armijo is satisfied but Wolfe is not, i.e., the
phipm = phipa # derivative is still negative: move the left
# endpoint of the interval to a
else # Armijo not satisfied
as = a # move the right endpoint of the interval to a
phips = phipa
end
lsiter += 1
end
if printing
@printf("%2d", lsiter)
end
return (a, phia)
end
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
function BacktrackingLS(phi0, phip0, as, m1, tau)
# performs a Backtracking Line Search.
#
# phi0 = phi( 0 ), phip0 = phi'( 0 ) < 0
#
# as > 0 is the first value to be tested, which is decreased by
# multiplying it by tau < 1 until the Armijo condition with parameter
# m1 is satisfied
#
# returns the optimal step and the optimal f-value
local phia
lsiter = 1 # count ls iterations
while feval MaxFeval && as > mina
(phia, _) = f2phi(as)
if phia phi0 + m1 * as * phip0 # Armijo satisfied
break # we are done
end
as = as * tau
lsiter += 1
end
if printing
@printf("\t%2d", lsiter)
end
return (as, phia)
end
# Plotf = 1
# 0 = nothing is plotted
# 1 = the level sets of f and the trajectory are plotted (when n = 2)
# 2 = the function value / gap are plotted, iteration-wise
# 3 = the function value / gap are plotted, function-evaluation-wise
Interactive = false
local gap
PXY = Matrix{Real}(undef, 2, 0)
status = "error"
if Plotf > 1
if Plotf == 2
MaxIter = 200 # expected number of iterations for the gap plot
else
MaxIter = 1000 # expected number of iterations for the gap plot
end
gap = []
end
if x == nothing
(fStar, x, _) = f(nothing)
else
(fStar, _, _) = f(nothing)
end
n = size(x, 1)
if astart == 0
throw(ArgumentError("astart must be ≠ 0"))
end
if m1 0 || m1 1
throw(ArgumentError("m1: ($m1) is not in (0, 1)"))
end
AWLS = (m2 > 0 && m2 < 1)
if tau 0 || tau 1
throw(ArgumentError("tau: ($tau) is not in (0, 1)"))
end
if sfgrd 0 || sfgrd 1
throw(ArgumentError("sfgrd: ($sfgrd) is not in (0, 1)"))
end
if mina < 0
throw(ArgumentError("mina: ($mina) must be ≥ 0"))
end
if Plotf > 1 && plt == nothing
plt = plot(xlims=(0, MaxIter))
elseif plt == nothing
plt = plot()
end
# "global" variables- - - - - - - - - - - - - - - - - - - - - - - - - - - -
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
lastx = zeros(n) # last point visited in the line search
lastg = zeros(n) # gradient of lastx
feval = 1 # f() evaluations count ("common" with LSs)
# initializations - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
if printing
println("Gradient method")
end
if fStar > -Inf
if printing
print("feval\trel gap\t\t|| g(x) ||\trate\t")
end
prevv = Inf
else
if printing
print("feval\tf(x)\t\t\t|| g(x) ||")
end
end
if astart > 0
if printing
print("\tls feval\ta*")
end
end
if printing
print("\n\n")
end
# compute first f-value and gradient in x^0 - - - - - - - - - - - - - - - -
g = zeros(2, 1)
v, _ = f2phi(0)
g = lastg
# compute norm of the (first) gradient- - - - - - - - - - - - - - - - - - -
ng = norm(g)
if eps < 0
ng0 = -ng # norm of first subgradient: why is there a "-"? ;-)
else
ng0 = 1 # un-scaled stopping criterion
end
# main loop - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
while true
# output statistics & plot gap/f-values - - - - - - - - - - - - - - - -
if fStar > -Inf
gapk = (v .- fStar) / max(abs(fStar), 1)
if printing
@printf("%4d\t%1.4e\t%1.4e", feval, gapk, ng)
end
if prevv < Inf
if printing
@printf("\t%1.4e", (v .- fStar) / (prevv - fStar))
end
else
if printing
print(" \t ")
end
end
prevv = v
if Plotf > 1
if Plotf 2
push!(gap, gapk)
end
plot!(plt, yscale=:log)
if Plotf == 2
plot!(plt, ylims=(1e-15, 1e+1))
else
plot!(plt, ylims=(1e-15, 1e+4))
end
end
else
if printing
@printf("%4d\t%1.8e\t\t%1.4e", feval, v, ng)
end
if Plotf 2
push!(gap, v)
end
end
# stopping criteria - - - - - - - - - - - - - - - - - - - - - - - - - -
if ng (eps * ng0)
status = "optimal"
if printing
print("\n")
end
break
end
if feval > MaxFeval
status = "stopped"
if printing
print("\n")
end
break
end
# compute step size - - - - - - - - - - - - - - - - - - - - - - - - - -
phip0 = -ng * ng
if astart < 0
# fixed-step approach
lastx = x .+ astart .* g
(v, lastg, _) = f(lastx)
feval = feval + 1
else
# line-search approach, either Armijo-Wolfe or Backtracking
if AWLS
a, v = ArmijoWolfeLS(v, phip0, astart, m1, m2, tau)
else
a, v = BacktrackingLS(v, phip0, astart, m1, tau)
end
end
# output statistics - - - - - - - - - - - - - - - - - - - - - - - - - -
if astart > 0
if printing
@printf("\t%1.4e\n", a)
end
if a mina
status = "error"
if printing
print("\n")
end
break
end
else
if printing
print("\n")
end
end
if v MInf
status = "unbounded"
if printing
print("\n")
end
break
end
# compute new point - - - - - - - - - - - - - - - - - - - - - - - - - -
# possibly plot the trajectory
if n == 2 && Plotf == 1
PXY = hcat(PXY, hcat(x, lastx))
end
x = lastx
# update gradient - - - - - - - - - - - - - - - - - - - - - - - - - - -
g = lastg
ng = norm(g)
# iterate - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
if Interactive
readline()
end
end
if plotatend
if Plotf 2
plot!(plt, gap)
elseif Plotf == 1 && n == 2
plot!(plt, PXY[1, :], PXY[2, :])
end
display(plt)
end
# end of main loop- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
return (x, status)
end