Files
cmdla/10-04/GMQ.m

320 lines
8.1 KiB
Mathematica
Raw Normal View History

2023-10-29 02:06:02 +01:00
function [ x , status ] = GMQ( Q , q , varargin )
%function [ x , status ] = GMQ( Q , q , x , fStar , alpha , MaxIter , eps )
%
% Apply the Gradient Method (a.k.a., Steepest Descent algorithm) to the
% minimization of the quadratic function
%
% f( x ) = 1/2 x^T Q x + q x
%
% Input:
%
% - Q ([ n x n ] real symmetric matrix, not necessarily positive
% semidefinite): the quadratic part of f
%
% - q ([ n x 1 ] real column vector): the linear part of f
%
% - x ([ n x 1 ] real column vector or empty, optional): the point where to
% start the algorithm from; if not provided or empty, the all-0 n-vector
% is used
%
% - fStar (real scalar, optional, default value Inf): optimal value of f.
% if a non-Inf value is provided it is used to print out stasistics about
% the convergence speed of the algorithm
%
% - alpha (real scalar, optional, default value 0): if alpha > 0, then the
% fixed-stepsize version of the algorithm is run with alpha as the fixed
% stepsize, otherwise the standard exact line search is used
%
% - MaxIter (integer scalar, optional, default value 1000): the maximum
% number of iterations
%
% - eps (real scalar, optional, default value 1e-6): the accuracy in the
% stopping criterion: the algorithm is stopped when the norm of the
% gradient is less than or equal to eps
%
% Output:
%
% - x ([ n x 1 ] real column vector): either the best solution found so far
% (possibly the optimal one) or a direction proving the problem is
% unbounded below, depending on case
%
% - status (string): a string describing the status of the algorithm at
% termination
%
% = 'optimal': the algorithm terminated having proven that x is a(n
% approximately) optimal solution, i.e., the norm of the gradient at x
% is less than the required threshold
%
% = 'unbounded': the algorithm terminated having proven that the problem
% is unbounded below: x contains a direction along which f is
% decreasing to - Inf, either because f is linear along x and the
% directional derivative is not zero, or because x is a direction with
% negative curvature
%
% = 'stopped': the algorithm terminated having exhausted the maximum
% number of iterations: x is the best solution found so far, but not
% necessarily the optimal one
%
%{
=======================================
Author: Antonio Frangioni
Date: 26-12-22
Version 0.2
Copyright Antonio Frangioni
=======================================
%}
Plotf = 2;
% 0 = nothing is plotted
% 1 = the function value / gap are plotted
% 2 = the level sets of f and the trajectory are plotted (when n = 2)
Interactive = true; % if we pause at every iteration
Streamlined = true; % if the streamlined version of the algorithm, with
% only one O( n^2 ) operation per iteration, is used
% reading and checking input- - - - - - - - - - - - - - - - - - - - - - - -
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
if ~ isreal( Q )
error( 'Q not a real matrix' );
end
n = size( Q , 1 );
if n <= 1
error( 'Q is too small' );
end
if n ~= size( Q , 2 )
error( 'Q is not square' );
end
if ~ isreal( q )
error( 'q not a real vector' );
end
if size( q , 2 ) ~= 1
error( 'q is not a (column) vector' );
end
if size( q , 1 ) ~= n
error( 'q size does not match with Q' );
end
if isempty( varargin ) || isempty( varargin{ 1 } )
x = zeros( n , 1 );
else
x = varargin{ 1 };
if ~ isreal( x )
error( 'x not a real vector' );
end
if size( x , 2 ) ~= 1
error( 'x is not a (column) vector' );
end
if size( x , 1 ) ~= n
error( 'x size does not match with Q' );
end
end
if length( varargin ) > 1
fStar = varargin{ 2 };
if ~ isreal( fStar ) || ~ isscalar( fStar )
error( 'fStar is not a real scalar' );
end
else
fStar = - Inf;
end
if length( varargin ) > 2
alpha = varargin{ 3 };
if ~ isreal( alpha ) || ~ isscalar( alpha )
error( 'alpha is not a real scalar' );
end
else
alpha = 0;
end
if length( varargin ) > 3
MaxIter = round( varargin{ 4 } );
if ~ isscalar( MaxIter )
error( 'MaxIter is not an integer scalar' );
end
if MaxIter < 1
error( 'MaxIter too small' );
end
else
MaxIter = 1000;
end
if length( varargin ) > 4
eps = varargin{ 5 };
if ~ isreal( eps ) || ~ isscalar( eps )
error( 'eps is not a real scalar' );
end
if eps < 0
error( 'eps can not be negative' );
end
else
eps = 1e-6;
end
% initializations - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
fprintf( 'Gradient method for quadratic functions ' );
if alpha == 0
fprintf( '(optimal stepsize)\n' );
else
fprintf( '(fixed stepsize)\n' );
end
fprintf( 'iter\tf(x)\t\t\t||g||');
if fStar > - Inf
fprintf( '\t\tgap\t\trate');
prevf = Inf;
end
if alpha == 0
fprintf( '\t\talpha' );
end
fprintf( '\n\n' );
i = 0;
if Plotf == 1
gap = [];
end
if Streamlined
g = Q * x + q;
end
% main loop - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
while true
% compute function value and gradient - - - - - - - - - - - - - - - - -
if ~ Streamlined
g = Q * x + q;
end
ng = norm( g );
f = ( g + q )' * x / 2; % 1/2 x^T Q x + q x = 1/2 ( x^T Q x + 2 q x )
% = 1/2 x^T ( Q x + q + q ) = 1/2 ( q + g ) x
i = i + 1;
% output statistics - - - - - - - - - - - - - - - - - - - - - - - - - - -
fprintf( '%4d\t%1.8e\t\t%1.4e' , i , f , ng );
if fStar > - Inf
gapk = ( f - fStar ) / max( [ abs( fStar ) 1 ] );
fprintf( '\t%1.4e' , gapk );
if prevf < Inf
fprintf( '\t%1.4e' , ( f - fStar ) / ( prevf - fStar ) );
else
fprintf( '\t\t' );
end
prevf = f;
if Plotf == 1
gap( end + 1 ) = gapk;
semilogy( gap , 'Color' , 'k' , 'LineWidth' , 2 );
xlim( [ 0 MaxIter ] );
ylim( [ 1e-15 inf ] );
ax = gca;
ax.FontSize = 16;
ax.Position = [ 0.03 0.07 0.95 0.92 ];
ax.Toolbar.Visible = 'off';
end
end
% stopping criteria - - - - - - - - - - - - - - - - - - - - - - - - - -
if ng <= eps
status = 'optimal';
if alpha == 0
fprintf( '\n' );
end
break;
end
if i > MaxIter
status = 'stopped';
if alpha == 0
fprintf( '\n' );
end
break;
end
% compute step size - - - - - - - - - - - - - - - - - - - - - - - - - -
% meanwhile, check if f is unbounded below
% note that if alpha > 0 this is only used for the unboundedness check
% which is a bit of a waste, but there you go; anyway, in the
% streamlined version this only costs O( n )
if Streamlined
v = Q * g;
den = g' * v;
else
den = g' * Q * g;
end
if den <= 1e-14
% this is actually two different cases:
%
% - g' * Q * g = 0, i.e., f is linear along g, and since the
% gradient is not zero, it is unbounded below
%
% - g' * Q * g < 0, i.e., g is a direction of negative curvature for
% f, which is then necessarily unbounded below
%
if alpha == 0
fprintf( '\n' );
end
fprintf( 'g'' * Q * g = %1.4e ==> unbounded\n' , den );
status = 'unbounded';
break;
end
if alpha > 0
t = alpha;
else
t = ng^2 / den; % stepsize
fprintf( '\t%1.2e' , t );
end
fprintf( '\n' );
% compute new point - - - - - - - - - - - - - - - - - - - - - - - - - -
% possibly plot the trajectory
if n == 2 && Plotf == 2
PXY = [ x , x - t * g ];
line( 'XData' , PXY( 1 , : ) , 'YData' , PXY( 2 , : ) , ...
'LineStyle' , '-' , 'LineWidth' , 2 , 'Marker' , 'o' , ...
'Color' , [ 0 0 0 ] );
end
x = x - t * g;
if Streamlined
g = g - t * v;
end
% iterate - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
if Interactive
pause;
end
end
% end of main loop- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
end % the end- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -