Added Project and Report

This commit is contained in:
elvis
2024-07-30 14:43:25 +02:00
parent c828453e94
commit 3ad6f7f86f
311 changed files with 13490 additions and 3280 deletions

252
Lessons/10-12/GRS.m Normal file
View File

@ -0,0 +1,252 @@
function [ x , status ] = GRS( f , varargin )
%function [ x , status ] = GRS( f , range , delta , MaxFeval )
%
% Apply the classical Golden Ratio Search for the minimization of the
% provided one-dimensional function f, which must have the following
% interface:
%
% [ v , varargout ] = f( x )
%
% Input:
%
% - x is either a scalar real denoting the input of f(), or [] (empty).
%
% Output:
%
% - v (real, scalar): if x == [] this is the best known lower bound on
% the global optimum of f() on the standard interval in which f() is
% supposed to be minimised (see next). If x ~= [] then v = f(x).
%
% - g (real, either scalar or a [ 2 x 1 ] matrix denoting an interval) is
% the first optional argument. This also depends on x. if x == [] then
% g is a [ 2 x 1 ] matrix denoting the standard interval in which f()
% is supposed to be minimised (into which v is the minimum). f() is
% never called with x ~= [].
%
% The other [optional] input parameters are:
%
% - range: (either [ 2 x 1 ] real vector or [], default []): the range
% in which the local minimum has to be seached; if range == [], the
% default range point provided by f() is used.
%
% - delta (real scalar, default value 1e-6): the accuracy in the stopping
% criterion: the algorithm is stopped when the diameter of the
% restricted range is less than or equal to delta.
%
% - MaxFeval (integer scalar, default value 100): the maximum number of
% function evaluations (hence, iterations will be not more than
% MaxFeval - 2 because at each iteration one function evaluation is
% performed, except in the first one when two are).
%
% Output:
%
% - x (real scalar): the best solution found so far.
%
% - status (string): a string describing the status of the algorithm at
% termination
%
% = 'optimal': the algorithm terminated having proven that x is a(n
% approximately) optimal solution, i.e., the diameter of the
% restricted range is less than or equal to delta.
%
% = 'empty': the provided range is empty (x_- > x_+) and therefore
% such is the optimization problem
%
% = 'stopped': the algorithm terminated having exhausted the maximum
% number of iterations: x is the best solution found so far, but not
% necessarily the optimal one
%
% = 'error': the algorithm found a numerical error that prevents it from
% continuing optimization
%
%{
=======================================
Author: Antonio Frangioni
Date: 09-08-21
Version 0.10
Copyright Antonio Frangioni
=======================================
%}
Plotg = 1;
% 0 = nothing is plotted
% 1 = the function value / gap are plotted
% 2 = the function and the test points used are plotted
Interactive = true; % if we pause at every iteration
% reading and checking input- - - - - - - - - - - - - - - - - - - - - - - -
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
if ~ isa( f , 'function_handle' )
error( 'f not a function' );
end
if isempty( varargin ) || isempty( varargin{ 1 } )
[ fStar , range ] = f( [] );
else
fStar = - Inf; % if the range is not the standard one, we can't trust
% the standard global minima
range = varargin{ 1 };
end
if ~ isreal( range )
error( 'range not a real vector' );
end
if ( size( range , 1 ) ~= 1 ) || ( size( range , 2 ) ~= 2 )
error( 'range is not a [ 1 x 2 ] vector' );
end
xm = range( 1 ); % x_-
xp = range( 2 ); % x_+
if xm > xp
fprintf( 'range is empty\n' );
x = NaN;
status = 'empty';
return;
end
if length( varargin ) > 1
delta = varargin{ 2 };
if ~ isreal( delta ) || ~ isscalar( delta )
error( 'delta is not a real scalar' );
end
else
delta = 1e-6;
end
if length( varargin ) > 2
MaxFeval = round( varargin{ 3 } );
if ~ isscalar( MaxFeval )
error( 'MaxFeval is not an integer scalar' );
end
if MaxFeval < 2
error( 'at least two function computations are required' );
end
else
MaxFeval = 100;
end
% initializations - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
r = ( sqrt( 5 ) - 1 ) / 2;
xmp = xm + ( 1 - r ) * ( xp - xm ); % x'_-
xpp = xm + r * ( xp - xm ); % x'_+
fxmp = f( xmp ); % f( x'_- )
fxpp = f( xpp ); % f( x'_+ )
feval = 2;
if fxmp <= fxpp
fx = fxmp;
else
fx = fxpp;
end
status = 'optimal';
if Plotg
gap = [];
end
fprintf( 'Golden ratio search\n');
if fStar > - Inf
fprintf( 'feval\trel gap\t\tx_-\t\tx_+\n');
else
fprintf( 'feval\tfbest\t\tx_-\t\tx_+\n');
end
% main loop - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
while xp - xm > delta
% output statistics - - - - - - - - - - - - - - - - - - - - - - - - - -
if fStar > - Inf
gapk = ( fx - fStar ) / max( [ abs( fStar ) 1 ] );
if Plotg == 1
gap( end + 1 ) = gapk;
semilogy( gap , 'Color' , 'k' , 'LineWidth' , 2 );
xlim( [ 0 35 ] );
ylim( [ 1e-15 inf ] );
ax = gca;
ax.FontSize = 16;
ax.Position = [ 0.03 0.07 0.95 0.92 ];
ax.Toolbar.Visible = 'off';
end
else
gapk = fx;
end
fprintf( '%4d\t%1.4e\t%1.8e\t%1.8e\n' , feval , gapk , xm , xp );
if Plotg == 2
xbot = xm - ( xp - xm ) / 20;
xtop = xp + ( xp - xm ) / 20;
warning( 'off' , 'all' );
fplot( @(x) f( x ) , [ xbot xtop ] , 'Color' , 'k' , ...
'LineWidth' , 1 );
xlim( [ xbot xtop ] );
yticks( [] );
ax = gca;
ax.FontSize = 16;
ax.Position = [ 0.025 0.05 0.95 0.95 ];
ax.Toolbar.Visible = 'off';
xticks( [ xbot xm xmp xpp xp xtop ] );
xticklabels( { num2str( xbot , '%1.1g' ) , 'x-' , 'x''-' , ...
'x''+' , 'x+' , num2str( xtop , '%1.1g' ) } );
warning( 'on' , 'all' );
end
% stopping criteria - - - - - - - - - - - - - - - - - - - - - - - - - -
if feval > MaxFeval
status = 'stopped';
break;
end
% main logic- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
if fxmp <= fxpp
xp = xpp; xpp = xmp; xmp = xm + ( 1 - r ) * ( xp - xm );
fxpp = fxmp; fx = fxmp; fxmp = f( xmp );
else
xm = xmp; xmp = xpp; xpp = xm + r * ( xp - xm );
fxmp = fxpp; fx = fxpp; fxpp = f( xpp );
end
feval = feval + 1;
if Interactive
pause;
end
% iterate - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
end
% end of main loop- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% select final answer
if fxmp <= fxpp
x = xmp;
else
x = xpp;
end
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
end % the end- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -