Added Project and Report

This commit is contained in:
elvis
2024-07-30 14:43:25 +02:00
parent c828453e94
commit 3ad6f7f86f
311 changed files with 13490 additions and 3280 deletions

266
Lessons/11-23/HBG.jl Normal file
View File

@ -0,0 +1,266 @@
using LinearAlgebra, Printf, Plots
function HBG(f;
x::Union{Nothing, Vector}=nothing,
alpha::Real=1,
beta::Real=0.9,
eps::Real=1e-6,
MaxIter::Integer=300,
MInf::Real=-Inf,
plt::Union{Plots.Plot, Nothing}=nothing,
plotatend::Bool=true,
Plotf::Integer=0,
printing::Bool=true)::Tuple{AbstractArray, String}
#function [ x , status ] = HBG( f , x , alpha , beta , eps , MaxIter ,
# MInf )
#
# Apply a Heavy Ball Gradient approach for the minimization of the
# provided function f, which must have the following interface:
#
# [ v , g ] = f( x )
#
# Input:
#
# - x is either a [ n x 1 ] real (column) vector denoting the input of
# f(), or [] (empty).
#
# Output:
#
# - v (real, scalar): if x == [] this is the best known lower bound on
# the unconstrained global optimum of f(); it can be -Inf if either f()
# is not bounded below, or no such information is available. If x ~= []
# then v = f(x).
#
# - g (real, [ n x 1 ] real vector): this also depends on x. if x == []
# this is the standard starting point from which the algorithm should
# start, otherwise it is the gradient of f() at x (or a subgradient if
# f() is not differentiable at x, which it should not be if you are
# applying the gradient method to it).
#
# The other [optional] input parameters are:
#
# - x (either [ n x 1 ] real vector or [], default []): starting point.
# If x == [], the default starting point provided by f() is used.
#
# - alpha (real scalar, optional, default value 1): the fixed stepsize of
# the Heavy Ball Gradient approach (along the anti-gradient).
#
# - beta (real scalar, optional, default value 0.9): the fixed weight of
# the momentum term
#
# beta * || x^i - x^{i - 1} ||
#
# Note that beta has to be >= 0, although 0 is accepted which turns the
# Heavy Ball Gradient approach into a "Light" Ball Gradient approach,
# i.e., a standard Gradient approach with fixed stepsize.
#
# - eps (real scalar, optional, default value 1e-6): the accuracy in the
# stopping criterion: the algorithm is stopped when the norm of the
# gradient is less than or equal to eps. If a negative value is provided,
# this is used in a *relative* stopping criterion: the algorithm is
# stopped when the norm of the gradient is less than or equal to
# (- eps) * || norm of the first gradient ||.
#
# - MaxIter (integer scalar, optional, default value 300): the maximum
# number of iterations == function evaluations.
#
# - MInf (real scalar, optional, default value -Inf): if the algorithm
# determines a value for f() <= MInf this is taken as an indication that
# the problem is unbounded below and computation is stopped
# (a "finite -Inf").
#
# Output:
#
# - x ([ n x 1 ] real column vector): the best solution found so far.
#
# - status (string): a string describing the status of the algorithm at
# termination
#
# = 'optimal': the algorithm terminated having proven that x is a(n
# approximately) optimal solution, i.e., the norm of the gradient at x
# is less than the required threshold
#
# = 'unbounded': the algorithm has determined an extrenely large negative
# value for f() that is taken as an indication that the problem is
# unbounded below (a "finite -Inf", see MInf above)
#
# = 'stopped': the algorithm terminated having exhausted the maximum
# number of iterations: x is the bast solution found so far, but not
# necessarily the optimal one
#
# = 'error': the algorithm found a numerical error that prevents it from
# continuing optimization (see mina above)
#
#{
# =======================================
# Author: Antonio Frangioni
# Date: 10-11-22
# Version 1.01
# Copyright Antonio Frangioni
# =======================================
#}
# Plotf = 1;
# 0 = nothing is plotted
# 1 = the level sets of f and the trajectory are plotted (when n = 2)
# 2 = the function value / gap are plotted
local gap
if Plotf == 2
gap = []
end
PXY = Matrix{Real}(undef, 2, 0)
Interactive = false # if we pause at every iteration
# reading and checking input- - - - - - - - - - - - - - - - - - - - - - - -
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
if isnothing(x)
(fStar, x, _) = f(nothing)
else
(fStar, _, _) = f(nothing)
end
n = size(x, 1)
if alpha 0
error("alpha must be positive")
end
if beta < 0
error("beta must be non-negative")
end
# initializations - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
if printing
@printf("Heavy Ball Gradient method\n")
if fStar > -Inf
@printf("feval\trel gap\t\tbest gap")
else
@printf("feval\tf(x)\tfbest")
end
@printf("\t|| g(x) ||\n\n")
end
if Plotf == 2 && isnothing(plt)
plt = plot(xlims=(0, MaxIter))
elseif isnothing(plt)
plt = plot()
end
(v, g, _) = f(x)
ng = norm(g)
vbest = v
local ng0
if eps < 0
ng0 = -ng # norm of first subgradient: why is there a "-"? ;-)
else
ng0 = 1 # un-scaled stopping criterion
end
pastd = zeros(n) # the direction at the previous iteration
feval = 1 # f() evaluations count
status = "error"
# main loop - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
while true
# output statistics - - - - - - - - - - - - - - - - - - - - - - - - - -
if fStar > -Inf
gapk = (v - fStar)/max(abs(fStar), 1)
bstgapk = (vbest - fStar)/max(abs(fStar), 1)
if printing
@printf("%4d\t%1.4e\t%1.4e\t%1.4e\n", feval, gapk, bstgapk, ng)
end
if Plotf == 2
push!(gap, gapk)
end
else
if printing
@printf("%4d\t%1.8e\t%1.8e\t\t%1.4e\n", feval, v, vbest, ng)
end
if Plotf == 2
push!(gap, v)
end
end
# stopping criteria - - - - - - - - - - - - - - - - - - - - - - - - - -
if ng eps * ng0
status = "optimal"
break
end
if feval > MaxIter
status = "stopped"
break
end
if v MInf
status = "unbounded"
break
end
# compute deflected gradient direction- - - - - - - - - - - - - - - - -
d = -alpha * g .+ beta * pastd
# compute new point - - - - - - - - - - - - - - - - - - - - - - - - - -
# possibly plot the trajectory
if n == 2 && Plotf == 1
PXY = hcat(PXY, hcat(x, x + d))
end
x += d
pastd .= d
# compute f() - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
(v, g, _) = f(x)
ng = norm(g)
if v < vbest
vbest = v
end
feval += 1
# iterate - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
if Interactive
l = readline()
if l == "exit"
break
end
end
end
# end of main loop- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# inner functions - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
if plotatend
if Plotf 2
plot!(plt, gap)
elseif Plotf == 1 && n == 2
plot!(plt, PXY[1, :], PXY[2, :])
end
display(plt)
end
return (x, status)
end # the end- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -