Added Project and Report
This commit is contained in:
45
README.md
45
README.md
@ -2,18 +2,18 @@
|
||||
|
||||
Repository for the course Computational Mathematics for Learning and Data Analysis.
|
||||
|
||||
# Installation
|
||||
## Installation
|
||||
These steps are for MacOS, with [```brew```](brew.sh) and ```python3``` already installed.
|
||||
|
||||
## Installing Julia
|
||||
### Installing Julia
|
||||
|
||||
```sh
|
||||
brew install julia
|
||||
```
|
||||
|
||||
## Installing JupyterLab and IJulia kernel
|
||||
### Installing JupyterLab and IJulia kernel
|
||||
|
||||
### IJulia kernel
|
||||
#### IJulia kernel
|
||||
|
||||
Inside the julia REPL:
|
||||
```julia
|
||||
@ -23,7 +23,7 @@ Pkg.add("IJulia")
|
||||
|
||||
A simple notebook experience can be obtained by simply running ```noteboot()```, which will install in a separate [```conda```](https://docs.conda.io/en/latest/) environment the needed python packages.
|
||||
|
||||
### JupyterLab
|
||||
#### JupyterLab
|
||||
|
||||
A separate environment with [```virtualenv```](https://pypi.org/project/virtualenv/) or [```virtualenvwrapper```](https://pypi.org/project/virtualenvwrapper/) is recommended.
|
||||
|
||||
@ -31,6 +31,39 @@ A separate environment with [```virtualenv```](https://pypi.org/project/virtuale
|
||||
pip install jupyterlab
|
||||
```
|
||||
|
||||
# Running
|
||||
## Running
|
||||
|
||||
To run simply start the notebook with ```jupyter lab``` , the julia kernel should be automatically detected.
|
||||
|
||||
|
||||
# Project 19 (Non-ML)
|
||||
|
||||
## Project
|
||||
|
||||
In the folder `Project` there is our implementation for the project.
|
||||
|
||||
Project description:
|
||||
|
||||
> (P) is the linear least squares problem
|
||||
|
||||
> $$\min_{w} \lVert \hat{X}w-\hat{y} \rVert$$
|
||||
|
||||
> where
|
||||
|
||||
> $$\hat{X}= \begin{bmatrix} X^T \newline \lambda I_m \end{bmatrix},\ \ \hat{y} = \begin{bmatrix} y \newline 0 \end{bmatrix},$$
|
||||
|
||||
> with $X$ the (tall thin) matrix from the ML-cup dataset by prof. Micheli, $\lambda > 0$ and $y$ is a random vector.
|
||||
|
||||
> - (A1) is an algorithm of the class of **limited-memory quasi-Newton methods**.
|
||||
> - (A2) is **thin QR factorization with Householder reflectors**, in the variant where one does not form the matrix $Q$, but stores the Householder vectors $u_k$ and uses them to perform (implicitly) products with $Q$ and $Q^T$.
|
||||
|
||||
## Report
|
||||
|
||||
In the folder `Report` there is the latex project for the report of the project.
|
||||
|
||||
Run to compile:
|
||||
```
|
||||
pdflatex -file-line-error -shell-escape --synctex=1 -interaction=nonstopmode main.tex
|
||||
biber main
|
||||
pdflatex -file-line-error -shell-escape --synctex=1 -interaction=nonstopmode main.tex
|
||||
```
|
||||
|
||||
Reference in New Issue
Block a user