first commit with current lessons
This commit is contained in:
38
09-29/eigenfaces/eigenfaces_classify.m
Executable file
38
09-29/eigenfaces/eigenfaces_classify.m
Executable file
@ -0,0 +1,38 @@
|
||||
function [matched_individual,bestmatchdistance]=eigenfaces_classify(test,training,n);
|
||||
%classifies using n principal components, closest match
|
||||
[w, h, nExpressions, nIndividuals]=size(training);
|
||||
X=reshape(training,[w*h,nIndividuals*nExpressions]);
|
||||
avg=mean(X,2);
|
||||
Xd=bsxfun(@minus,X,avg);
|
||||
[U,S,V]=svd(Xd,0);
|
||||
Xt=reshape(test,w*h,numel(test)/(w*h));
|
||||
Xtd=bsxfun(@minus,Xt,avg);
|
||||
scores=U(:,1:n)'*Xtd;
|
||||
trainingscores=U(:,1:n)'*Xd;
|
||||
%normalize scores and samples
|
||||
%scores=bsxfun(@rdivide,scores,sqrt(sum(abs(scores).^2)));
|
||||
%trainingscores=bsxfun(@rdivide,trainingscores,sqrt(sum(abs(trainingscores).^2)));
|
||||
%cosine similarity
|
||||
%C=scores'*trainingscores;
|
||||
%[bestmatchdistance bestmatchindex]=max(C,[],2);
|
||||
%matched_individual=ceil(bestmatchindex/nExpressions);
|
||||
|
||||
%Euclidean distance
|
||||
distanceMatrix=nan(size(scores,2),size(trainingscores,2));
|
||||
for i=1:size(scores,2)
|
||||
for j=1:size(trainingscores,2)
|
||||
distanceMatrix(i,j)=norm(scores(:,i)-trainingscores(:,j));
|
||||
end
|
||||
end
|
||||
[bestmatchdistance bestmatchindex]=min(distanceMatrix,[],2);
|
||||
matched_individual=ceil(bestmatchindex/nExpressions);
|
||||
if numel(test)==w*h
|
||||
subplot(1,2,1);
|
||||
imagesc(test);
|
||||
colormap(gray);
|
||||
subplot(1,2,2);
|
||||
imagesc(reshape(X(:,bestmatchindex),[w,h]));
|
||||
colormap(gray);
|
||||
disp('best match distance=');
|
||||
disp(bestmatchdistance);
|
||||
end
|
||||
Reference in New Issue
Block a user