
Università di Pisa

Computational Mathematics

for Learning and Data Analysis

Project Track 19 — Non-ML

Team 16

De Castelli Fabrizio

Rossi Elvis

f.decastelli@studenti.unipi.it

e.rossi46@studenti.unipi.it

Academic Year 2023–2024

Contents

1 Introduction 1

2 Problem Definition 2

2.1 QR . 2

2.2 L-BFGS . 3

2.3 Conditioning . 4

3 Algorithms 6

3.1 QR . 6

3.2 L-BFGS . 8

4 Experiments 12

4.1 QR . 13

4.2 L-BFGS . 14

4.3 Comparison between QR and L-BFGS 15

4.4 Other Experiments . 17

4.4.1 The Effect of the Memory Size 17

4.4.2 A Comparison of Quasi-Newton Methods 18

5 Concluding Remarks 21

6 Proofs 22

i

Introduction

(P) is the linear least squares problem

min
w

∥∥∥X̂w − ŷ
∥∥∥

where

X̂ =

[
XT

λIm

]
, ŷ =

[
y

0

]
,

with X the (tall thin) matrix from the ML-cup dataset by prof. Micheli, λ > 0

and y is a random vector.

– (A1) is an algorithm of the class of limited-memory quasi-Newton methods.

– (A2) is a cothin QR factorization with Householder reflectors, in the variant

where one does not form the matrix Q, but stores the Householder vectors

uk and uses them to perform (implicitly) products with Q and QT .

No off-the-shelf solvers allowed. In particular you must implement yourself the

thin QR factorization, and the computational cost of your implementation should

be at most quadratic in m.

Outline

This report is organized as follows:

chapter 2, in which the problem is reformulated under the mathematical aspect;

chapter 3, where we will include the implemented algorithms, with the analysis

of convergence and complexity;

chapter 4, to evaluate and compare (A1) with (A2) for this task and provide

different tests in order to examine deeper the algorithms;

chapter 5, in which conclusions are drawn, offering a critical analysis of the re-

sults obtained.

1

Problem Definition

Henceforth, we denote the norm-2 ∥−∥2 with the generic norm symbol ∥−∥.
Given X̂ ∈ R(m+n)×m, ŷ ∈ Rm+n, we want to find

min
w

∥∥∥X̂w − ŷ
∥∥∥

2.1 QR

By performing a QR factorization on X̂ we can reformulate the problem as follows:

min
w

∥∥∥X̂w − ŷ
∥∥∥ = min

w

∥∥∥QRw − ŷ
∥∥∥

with Q ∈ R(m+n)×(m+n) being an orthogonal matrix and R ∈ R(m+n)×m being an

upper triangular matrix. Knowing that Rij = 0, ∀i > j, i = 1, . . . ,m + n, j =

1, . . . ,m, we can write

R =

[
R0

0

]
, R0 ∈ Rm×m

Q =
[
Q0 Qc

]
, Q0 ∈ R(m+n)×m, Qc ∈ R(m+n)×n

Since orthogonal matrices preserve norm-2, we have:

min
w

∥QRw − ŷ∥ = min
w

∥∥QT (QRw − ŷ)
∥∥ =

min
w

∥∥QTQRw −QT ŷ
∥∥ =

min
w

∥∥Rw −QT ŷ
∥∥ =

min
w

∥∥∥∥∥
[
R0

0

]
w −

[
QT

0

QT
c

]
ŷ

∥∥∥∥∥ =

min
w

∥∥∥∥∥
[
R0w −QT

0 ŷ

−QT
c ŷ

]∥∥∥∥∥
2

The entries of the second block −QT
c ŷ do not depend on w, meaning that they will

appear in the norm independently from w. Thus, we can simplify the problem and

solve the triangular system

R0w −QT
0 ŷ = 0 ⇐⇒ R0w = QT

0 ŷ

provided that R0 is invertible.

R0 is invertible ⇐⇒ X̂ has full column rank ⇐⇒ X̂T X̂ ≻ 0.

R0 is invertible and the triangular system can be solved via backsubstitution. This

claim is proved in the last section.

2.2 L-BFGS

We can define

g(w) = f(w)2 =
∥∥∥X̂w − ŷ

∥∥∥2 (2.1)

and reformulate the problem equivalently in terms of g(w), since it is monotonic.

min
w

g(w) = min
w

∥∥∥X̂w − ŷ
∥∥∥2 = min

w

(
X̂w − ŷ

)T (
X̂w − ŷ

)
The gradient of g with respect to w is

∇g(w) = 2X̂T
(
X̂w − ŷ

)
Likewise the gradient of f(w) is as follows:

∇f(w) =
1∥∥∥X̂w − ŷ

∥∥∥X̂T
(
X̂w − ŷ

)
but gives much worse performance since it is no longer quadratic.

The function is L-smooth since ∀w,w′ ∈ Rm, with w ̸= w′:

3

∥∇g(w)−∇g(w′)∥ ≤ L ∥w − w′∥

⇐⇒
∥∥∥X̂T (X̂w − w′)− X̂T (X̂w′ − ŷ)

∥∥∥ ≤ L ∥w − w′∥

⇐⇒
∥∥∥X̂T X̂(w − w′)

∥∥∥ ≤ L ∥w − w′∥

⇐=
∥∥∥X̂T X̂

∥∥∥ ∥w − w′∥ ≤ L ∥w − w′∥

⇐⇒
∥∥∥X̂T X̂

∥∥∥ ≤ L

The function g is also strongly convex since ∇2g(w) = X̂T X̂ ≻ 0.

The tomography of g(w) with respect to the direction p is:

ϕ(α) = (X̂(w + αp)− ŷ)
T
· (X̂(w + αp)− ŷ)

dϕ(α)

dα
= 2wT X̂T X̂p− 2ŷT X̂p+ 2αpT X̂T X̂p

d2ϕ(α)

dα2
= 2pT X̂T X̂p (2.2)

Since d2ϕ(α)
dα2 is constant, the tomography is simply a parabola and since X̂T X̂

is positive definite, the dot product ⟨p, p⟩X̂T X̂ is always positive and the parabola

always has a minimum. The minimum is found by solving dϕ(α)
dα

for 0:

αmin =
ŷT X̂p− wT X̂T X̂p

pT X̂T X̂p

2.3 Conditioning

We check the condition number κ(X̂) when the regularization term λ > 0 varies.

κ(X̂) =
∥∥∥X̂∥∥∥∥∥∥X̂T

∥∥∥ =
σ1

σm

=

√
λmax

λmin

with σ1, σm being respectively the largest and smallest singular values of X̂ and

λmax, λmin being the largest and smallest eigenvalues of X̂T X̂.

Knowing that X̂T X̂ = XXT + λ2Im, we have that

4

λmax = λ1 + λ2

λmin = λm + λ2

with λ1, λm being the largest and smallest eigenvalues of XXT , which are trans-

lated by λ2 as a result of adding λ2Im (Lemma 2)

In Lemma 3 we show that λm = 0 and conclude that κ(X̂) scales linearly with 1
λ
:

κ(X̂) =

√
λmax

λmin

=

√
λ1 + λ2

λm + λ2
=

√
λ1 + λ2

√
λ2

=

√
λ1 + λ2

λ

if λ1 > 0.

For lambda close to zero we have

√
λ1+λ2

λ
≈ O

(
1
λ

)
. This property is witnessed

in Figure 2.1, which is in logarithmic scale:

Figure 2.1: κ(X̂) for different values of λ

5

Algorithms

3.1 QR

The algorithm has been implemented considering that the input matrix A ∈ Rm×n,

where m may be different from n, namely it can be rectangular horizontally or

vertically. In this version we store in a proper data structure a matrix Υ ∈ m× n

of the following form (m > n in this example):

Υ = (υi,j)i,j =

∗ · · · ∗
. . .

...

∗

u1 u2 · · · un




uk ∈ Rm−k+1, 1 ≤ k ≤ n

and the values of the diagonal of R in a vector d ∈ Rn. The ∗ entries are elements

computed in the QR factorization belonging to the upper triangular matrix, yielded

by line 6 of Algorithm 1. In this way we are allowed to lazily perform the products

Qy and QTy by means of the householder vectors u1 . . . , un that we stored. On the

other hand, to compute a product between the upper part of Υ and an input vector

we reconstruct the upper triangular matrix by taking element υij such that j > i

and attach the vector d as the diagonal of the resulting matrix. The zeros of the

matrix R are ignored.

6

Algorithm 1: Thin QR

Input : A ∈ Rm×n

Output: Q ∈ Rm×m, R ∈ Rm×n implicit QR factorization of A

1 Υ = copy(A)

2 d = zeros(min(m,n))

3 for k ∈ 1 . . .min(m,n) do

4 uk, sk = householder vector(Υ[k : m, k])

5 dk = sk

6 Υ[k : m, k + 1 : n] = Υ[k : m, k + 1 : n]− 2u(uTΥ[k : m, k + 1 : n])

7 Υ[k : m, k] = uk

8 end

9 return Υ, d

Algorithm 2: householder vector

Input : x ∈ Rd

Output: u ∈ Rd, s ∈ R householder vector of x

1 s = ∥x∥
2 if x1 ≥ 0 then

3 s = −s

4 end

5 u = copy(x)

6 u1 = u1 − s

7 u = u / ∥u∥
8 return u, s

We assume m > n as the case n > m is similar for the complexity analysis.

The time complexity of this algorithm is θ
(
mn2

)
≈ θ
(
n3
)
, because m ≈ n in (P).

We will see in section Experiments that the running time scales linearly with m

as expected, where m is the size of X̂.

7

3.2 L-BFGS

We follow the syntax from Numerical Optimization[3] and define fk = f(xk)

Algorithm 3: Limited Memory BFGS

Input : f : Rn −→ R, x ∈ Rn, m memory, ϵ tolerance

Output: x∗ ending point, f(x∗), ∇f(x∗)

1 k = 0

2 while ∇fk ≥ ϵ∇f0 do

3 if storage is empty then

4 H0
k = I

5 else

6 H0
k = ⟨yk−1,sk−1⟩

∥yk−1∥2
· I

7 Calculate pk = Hk∇fk with Algorithm 4

8 Choose αk satisfying the Armijo-Wolfe conditions or with exact line

search

9 xk+1 = xk + αkpk

10 sk = xk+1 − xk

11 yk = ∇fk+1 −∇fk

12 curvature = ⟨yk, sk⟩
13 ρk = curvature−1

14 if curvature ≤ 10−16 then

15 free the storage and start again from gradient descent

16 else

17 Discard the vector pair {sk−m, yk−m, ρk−m} from storage

18 Save sk, yk, ρk

19 k = k + 1

20 end

21 return xk, fk, ∇fk

8

Algorithm 4: Limited Memory BFGS - Two-Loop Recursion

1 q = ∇fk

2 for i = (k − 1), . . . , (k −m) do

3 αi = ρis
T
i q

4 q = q − αiyi

5 end

6 r = H0
kq

7 for i = (k −m), . . . , (k − 1) do

8 β = ρiy
T
i r

9 r = r + si
(
αi − β

)
10 end

11 return −r

In our implementation we keep the triplets (sk, yk, ρk) in a circular buffer with

capacity m and the values of αi in Algorithm 4 in a stack such that no explicit

indices are needed.

In case the curvature of the function is too small, we free the storage and restart

with a gradient step.

We prefer using an exact line search to compute the step size over an inexact

line search since the computational cost for our problem is lesser.

Convergence

To prove that the implemented method converges to the global minimum of the

function we have to optimize, we follow [1] and state the following assumptions

about our problem:

1. f ∈ C2

2. The level sets L = {x ∈ Rn | f(x) ≤ f(x0)} is convex

3. ∃ M1,M2 ∈ R+ such that

M1 ∥z∥2 ≤ zTG(x)z ≤ M2 ∥z∥2

∀z ∈ Rn and ∀x ∈ L

9

We follow the publication’s notation and define:

G(x) := ∇2f(x)

Ḡk(x) :=

∫ 1

0

G(xk + ταkpk)dτ

From Taylor’s theorem:

yk = Ḡkαkpk = Ḡksk (3.1)

The first assumption for our problem follows from the definition. The second

assumption is proved by Equation 2.2. The third assumption is also a consequence

of the fact that the hessian of f is constant.

Theorem. Let B0 be any symmetric positive definite initial matrix, and let x0 be

a starting point for which the Assumptions 1, 2 and 3 hold, then the sequence xk

generated by the L-BFGS algorithm converges to the minimizer x∗ of f linearly.

Proof: Using Equation 3.1 and Assumption 3:

M1 ∥sk∥2 ≤ yTk sk ≤ M2 ∥sk∥2

and:
∥yk∥2

yTk sk
=

sTk Ĝ
2
ksk

sTk Ĝksk

Both trace and determinant can be expressed in terms of the trace and determinant

of the starting matrix from which the approximate hessian is constructed:

tr(Bk+1) ≤ tr(B
(0)
k) + m̃M2 ≤ M3

det(Bk+1) = det(B
(0)
k) ·

m̃−1∏
l=0

yTl sl

sTl B
(l)
k sl

≥ det

(
B

(0)
k

(
M1

M3

)m̃
)

≥ M4

where m̃ is the memory size and M3 and M4 are chosen appropriately in R+.

From these two bounds we have that for some constant δ > 0:

cos(θk) =
sTkBksk

∥sk∥ ∥Bksk∥
≥ δ

10

Since with exact line search the Armijo condition f(xk + αkpk) ≤ f(xk) +

m1αk∇f(xk) is always satisfied if the constant m1 does not exclude the minimum

x∗ and since the strong Wolfe condition ∥∇f(xk + αkpk)∥ ≤ m3 ∥∇f(xk)∥ is also

always satisfied since ∥∇f(xk + αkpk)∥ = O(u), follows from the two conditions

and Assumptions 1 and 2 that:

f(xk+1)− f(x∗) ≤ (1− c cos2(θk)(f(xk)− f(x∗)))

=⇒ f(xk)− f(x∗) ≤ (1− c · δ2)k(f(x0)− f(x∗))

=⇒ f(xk)− f(x∗) ≤ rk(f(x0)− f(x∗))

for some r ∈ [0, 1). Using Assumption 3:

1

2
M1 ∥xk − x∗∥2 ≤ f(xk)− f(x∗)

=⇒ ∥xk − x∗∥ ≤ rk/2
(
2
f(x0)− f(x∗)

M1

)(1/2)

so the sequence {xk} is linearly convergent. ■

The implementation of L-BFGS that uses Armijo-Wolfe line search also satisfies

the assumptions so it also converges linearly to x∗.

11

Experiments

In this chapter we present the results of the experiments run on both algorithms as

well as a comparison of the two methods in terms of accuracy and time scalability.

To test the behaviour of the two methods we handle both cases in which the

matrix X̂ is well-conditioned, with κ(X̂) ≈ 5, and ill-conditioned, with κ(X̂) ≈
5× 105. To accomplish so, we randomly generated the matrix X forcing its values

to be in the range [−1, 1], the dimensions m = 1000 and n = 20 (except for time

and memory scalability tests), and, as we have seen in section 2.3, since we can

control the conditioning directly with the hyperparameter λ, we choose for the first

case λ = 10−4 and for the latter λ = 10−12.

For the QR factorization we check how the relative error and residual change

with respect to different values of λ. Then, we confirm the backward stability of

the decomposition over different values of λ and check its forward stability as well.

For what concerns L-BFGS we fix the relative tolerance ϵ = 10−14, the memory

size k = 7 and the maximum number of function evaluations to 200, knowing that

the function we have to optimize can be easily optimized by the method.

The last kind of tests we present concerns the scalability of the methods in

terms of time and memory, which has been compared by modifying the matrix

X̂ ∈ R(m+n)×m by generating random matrices with increasing m and n separately.

As mentioned before, we brought this experiment to the case in which X̂ is either

ill-conditioned or well-conditioned. In the case of the thin-QR factorization we

expect a linear dependency between the number of rows and the time needed to

converge to the optimal solution, assuming a fixed number of columns. If instead

we vary the number of columns we expect a quadratic dependency.

In section 4.4 we first explore better the effect of the memory size for L-BFGS

and then we provide a deeper comparison of other Quasi-Newton methods we

manually implemented (even if not really required by the project instructions).

All tests have been executed with the benchmark library

BenchmarkTools.jl[4] which ignores startup and compilation time and re-

12

peated 10 times in order to get accurate estimates.

4.1 QR

Since we know from theory that the QR decomposition is backward stable, we

expect that
∥X̂−QR∥
∥X̂∥ ≈ u. Or more explicitly that for QR = X̂+δX̂,

∥δX̂∥
∥X̂∥ = O(u).

The results in Figure 4.1a show a decreasing trend for relative error and residual

when increasing λ and hence decreasing the condition number κ(X̂). The errors

are acceptable even for the smallest lambda: λ = 10−16, κ(X̂) ≈ 5 × 1015. The

algorithm is backward stable as well, as it can be noticed from the green part of

the plot.

To check the forward error we QR-decomposed the original matrix X̂ to get Q

and R and then we perturbed it with a random matrix multiplied by a factor

δ = 10−10. Then, we ran another QR-decomposition on the perturbed version of

X̂ to get the factors Q̃ and R̃. Finally, we evaluated
∥∥∥Q− Q̃

∥∥∥ and ∥R−R̃∥
∥R∥ , that are

both much larger, as reported in Figure 4.1b. The forward error on Q is slightly

worse than on R due to its orthogonality property that needs to be maintained in

the factorization, fixing κ(X̂). However, we can see a generally decreasing trend

of the forward error with respect to the condition number of the matrix X̂.

(a) QR decomposition errors and backward
stability for different λ

(b) QR factorization forward stability on
Q and R for different λ

Figure 4.1: Errors and scalability of the QR decomposition for different values of
λ

13

4.2 L-BFGS

For the first experiment regarding this algorithm we compute the relative gap,

the residual and the number of iterations employed by the algorithms to converge.

The relative gap is defined as
∥w − w∗∥
∥w∗∥

where w is the solution found by our algorithm and w∗ is Julia’s ground truth

coming from its standard linear system solver.

The residual, instead, is defined as ∥∥∥X̂w − ŷ
∥∥∥

∥ŷ∥

The results are shown in Figure 4.2, satisfying constraints we imposed on κ(X̂).

It is evident from the plots that the convergence of the method is linear and that

it is able to compute a relatively good solution in a small number of iterations.

(a) Ill-conditioned matrix (b) Well-conditioned matrix

Figure 4.2: ∥∇f∥, Residual, Relative Error of L-BFGS execution on ill and well-
conditioned matrices

The other test we propose regards checking the convergence of the method,

when using different line search algorithms. We checked how the gradient norm

changes when using Exact Line Search and Armijo-Wolfe Line Search only on the

well-conditioned matrix.

14

Figure 4.3: Line Search algorithms comparison

From Figure 4.3 we can notice that the exact line search behaves better than

the inexact line search because of the nature of the function we are optimizing.

AWLS computes a step size which may lead to instability, but does converge.

4.3 Comparison between QR and L-BFGS

The tests have been performed by fixing one between m = 200 and n = 50 and

varying the other dimension from an initial value of 500 to a value of 5500, at in-

tervals of 500. The results of fixing m and varying n be summarized in Figure 4.4,

which shows a linear growth of running time with increasing n for the QR decom-

position and a better performance for L-BFGS, in both the ill and well-conditioned

case. The allocated memory is consistent and on the same trend as the running

time as expected.

15

(a) Ill-conditioned matrix (b) Well-conditioned matrix

Figure 4.4: Time and Memory scalability comparison of QR and L-BFGS on ill
and well-conditioned matrices, varying n

Instead, if we fix n and let m vary, we get the following curves as shown in

Figure 4.5. Both the running time and the allocated memory of QR grows more

or less quadratically with the number of columns, confirming what the theory

suggests.

(a) Ill-conditioned matrix (b) Well-conditioned matrix

Figure 4.5: Time and Memory scalability comparison of QR and L-BFGS on ill
and well-conditioned matrices, varying m

For QR the allocated memory is in the order of MiB even in the worst case

while L-BFGS allocates much less memory, in the order of KiB.

The conditioning of the matrix has no impact on the time taken to compute a

solution for the two algorithms compared, but rather has an impact for L-BFGS in

16

the quality of the solution when dealing with a very flat function (small λ). When

the function is flat it means that its curvature is low and the gradients change

slowly, so the algorithm struggles to rapidly descent towards the minimum with a

reasonable relative error.

4.4 Other Experiments

4.4.1 The Effect of the Memory Size

It is interesting to check the behaviour of L-BFGS when changing the memory

size. We compare the relative error decrease at each iteration with a memory size

that varies from 1 to 11, as shown in Figure 4.6:

(a) Ill-conditioned matrix (b) Well-conditioned matrix

Figure 4.6: The effect of the memory size

In accordance with the suggestions provided by [3], the memory size k should

be chosen such that 3 ≤ k ≤ 20, as it is empirically a good trade-off between

number of function evaluations and number of additional operations required to

reconstruct the hessian with the two loop formula (algorithm 4). However, since

the function that has to be optimized is quadratic, the algorithm is fast at finding

the optimal solution more or less independently of the memory size, but depends

still on the curvature κ(X̂) for the convergence. When the memory size is 1, the

algorithm is a normal gradient descent and still reaches similar convergence rate

with respect to higher memory sizes. For higher memory sizes the convergence rate

17

is almost indistinguishable for the well-conditioned case (Figure 4.6b). However,

for the ill-conditioned case, shown in Figure 4.6a, the algorithm can still converge

in 16 iterations without depending on the memory size k, but the relative error

is constant in each different setting. This is the consequence of the fact that

the algorithm was terminating in a flatter region in which the curvature is so

low that satisfies the stopping criterion imposed on the gradient, but with a bad

approximation of the optimum.

4.4.2 A Comparison of Quasi-Newton Methods

To further check the behaviour of our implementation of L-BFGS, we implemented

and tested a version of BFGS. In the beginning of this section we provide two

additional tests, performed only on well-conditioned matrices and in which we

compare the two solvers together. As far as the setup is concerned, we stick to the

default setup stated in chapter 4 and for BFGS we set the tolerance to the same

as L-BFGS. The first test is shown in Figure 4.7a and shows how for the least

squares problem the two algorithms are almost identical in terms of convergence

rate. In the plot we have the relative error, residual and gradient norm to be

almost equal between the two algorithms. To understand deeply and check the

differences in the implementation, we also checked the time and memory scalability.

It is not surprising that, as Figure 4.7b suggests, BFGS is much slower in finding

the optimum than its limited version, even for this small optimization problem.

This aspect reflects the theory and confirms that this method is more expensive

in terms of time and memory with respect to L-BFGS.

18

(a) Convergence rate (b) Time and memory scalability

Figure 4.7: BFGS vs L-BFGS

To enhance and point out better the effectiveness of the implementation, we

analyze other Quasi-Newton methods. We provide a final comparison between

a relevant subset, in particular the final comparison consists of confronting L-

BFGS, BFGS, DFP and SR1. Both DFP and BFGS are tested in its variants

with the Dogleg alternative to line search as well [2]. These algorithms have been

implemented and finally optimized in terms of efficiency in memory allocations,

since they are prone to huge memory allocation.

The plot in Figure 4.8 shows the running time of the algorithms on growing size

well-conditioned matrices. In Figure 4.8a, we can see that combining the update

formula (BFGS and DFP) with the Dogleg (trust region) brings a lot of inefficiency

in finding the minimum of that region since with line search an exact solution is

used. In the plot in Figure 4.8b we can have a clearer visualization of the difference

in efficiency between the methods, since the running time when using the Dogleg is

much higher and worsens the plot. In particular, the results stick with the theory

from which we expect exact line search to be better than dogleg method for finding

appropriate steps; we expect also for L-BFGS to be the fastest method, followed

by BFGS and SR1 that are almost equally efficient on average. The slowest is DFP

that is more than twice slower than the two previously mentioned algorithms.

19

(a) With Dogleg (b) Without Dogleg

Figure 4.8: Quasi-Newton methods running time comparison

The last test regards the memory allocation provided by the algorithms. This

test is the equivalent of the time scalability, but the metric is the number of allo-

cated bytes on average by the algorithms. Our implementation has been optimized

as much as possible, for instance by using Julia’s in-place operators in order to

minimize the number of allocations. The last plot we display, in Figure 4.9, shows

the trend of increasing allocated bytes by the algorithms. Methods that converge

more slowly or use more memory per iteration, by using more complex update

rules, perform worse.

Figure 4.9: Memory allocation of the different Quasi-Newton methods

20

Concluding Remarks

An implementation of the thin-QR factorization and limited memory BFGS has

been presented, in particular with exact line search in order to solve more efficiently

the least squares problem. Convergence for both methods have been proven and

tested. An implementation of BFGS and DFP, with both exact line search and

trust region method using the dogleg method, and SR1 have been implemented

and tested. From the experiments it is pretty clear that L-BFGS is better than

all other Quasi-Newton methods for solving the least squares problem, even when

using a small parameter for the memory. Instead the QR method performs better

when solving for ill-conditioned matrices, but the memory usage is higher.

21

Proofs

Lemma 1. X̂ has full column rank ⇐⇒ X̂T X̂ ≻ 0

Proof: To show that X̂T X̂ = XXT + λ2Im ≻ 0, λ > 0, we can consider the

quadratic form xT (XTX + λ2Im)x. Let B = XXT ⪰ 0.

xT (B + λ2Im)x = xTBx+ λ2xT Imx

= xTBx+ λ2 ∥x∥2

Since B is positive semidefinite, we have xTBx ≥ 0 ∀x ∈ Rm. Additionally,

λ2∥x∥2 > 0 ∀x ̸= 0. Therefore, xT (B + λ2Im)x > 0 for all non-zero vectors x,

meaning that X̂T X̂ ≻ 0.

■

Lemma 2. α ∈ Sp(A) ⇐⇒ (α + λ) ∈ Sp(A+ λI)

Proof: Av = αv ⇐⇒ (A+ λI)v = Av + λv = αv + λv = (α + λ)v ■

Lemma 3. The singular values of the matrix XXT , X ∈ Rm×n

are {σ2
1 . . . σ

2
n, 0 . . . 0}, with σ1 . . . σn being the singular values of X.

Proof: Consider the Singular Value Decomposition of the rank n matrix X

X = UΣV T

Σ = diag(σ1, . . . , σn) ∈ Rm×n Then

XXT = UΣV TV ΣTUT = UΣΣTU

with

ΣΣT = diag(σ2
1, . . . , σ

2
n, 0, . . . , 0) ∈ Rm×m

Hence, XXT has exactly m singular values of which m− n are zeros. ■

22

Bibliography

[1] D. C. Liu and J. Nocedal, “On the limited memory bfgs method for large

scale optimization,” Mathematical Programming, vol. 45, no. 1–3, pp. 503–

528, Aug. 1989. doi: 10.1007/bf01589116.

[2] N. Ampazis, S. Spirou, and S. Perantonis, “Training feedforward neural net-

works with the dogleg method and bfgs hessian updates,” in Neural Networks,

IEEE - INNS - ENNS International Joint Conference on, vol. 2, Los Alamitos,

CA, USA: IEEE Computer Society, Jul. 2000, p. 1138. doi: 10.1109/IJCNN.

2000.857827. [Online]. Available: https://doi.ieeecomputersociety.

org/10.1109/IJCNN.2000.857827.

[3] J. Nocedal and S. J. Wright, Numerical Optimization, 2e. New York, NY,

USA: Springer, 2006.

[4] J. Chen and J. Revels, “Robust benchmarking in noisy environments,” arXiv

e-prints, arXiv:1608.04295, Aug. 2016. arXiv: 1608.04295 [cs.PF].

23

https://doi.org/10.1007/bf01589116
https://doi.org/10.1109/IJCNN.2000.857827
https://doi.org/10.1109/IJCNN.2000.857827
https://doi.ieeecomputersociety.org/10.1109/IJCNN.2000.857827
https://doi.ieeecomputersociety.org/10.1109/IJCNN.2000.857827
https://arxiv.org/abs/1608.04295

	Introduction
	Problem Definition
	QR
	L-BFGS
	Conditioning

	Algorithms
	QR
	L-BFGS

	Experiments
	QR
	L-BFGS
	Comparison between QR and L-BFGS
	Other Experiments
	The Effect of the Memory Size
	A Comparison of Quasi-Newton Methods

	Concluding Remarks
	Proofs

