UNIVERSITA DI PIsA

COMPUTATIONAL MATHEMATICS
FOR LEARNING AND DATA ANALYSIS

PROJECT TRACK 19 — NON-ML

TEAM 16

De Castells Fabrizio f.decastelli @studenti.unipi.it

Rosst FElvis e.108s14 0 Qstudenti.unipi.it

Academic Year 2023-2024

Contents

1 Introduction

2 Problem Definition

4.1 QR ..
4.2 L-BFGS
4.3 Comparison between QR and L-BFGS
4.4 Other Experiments
4.4.1 The Effect of the Memory Size
4.4.2 A Comparison of Quasi-Newton Methods

5 Concluding Remarks

6 Proofs

12
13
14
15
17
17
18

21

22

Introduction

(P) is the linear least squares problem

A~
~

Xw—19

min
w

X xT A
X = ,yzy,
A, 0

with X the (tall thin) matrix from the ML-cup dataset by prof. Micheli, A > 0

and y is a random vector.

where

— (A1) is an algorithm of the class of limited-memory quasi-Newton methods.

~ (A2) is a cothin QR factorization with Householder reflectors, in the variant
where one does not form the matrix (), but stores the Householder vectors

uy, and uses them to perform (implicitly) products with @ and Q7.

No off-the-shelf solvers allowed. In particular you must implement yourself the
thin QR factorization, and the computational cost of your implementation should

be at most quadratic in m.

Outline

This report is organized as follows:

chapter 2, in which the problem is reformulated under the mathematical aspect;

chapter 3, where we will include the implemented algorithms, with the analysis

of convergence and complexity;

chapter 4, to evaluate and compare (A1) with (A2) for this task and provide

different tests in order to examine deeper the algorithms;

chapter 5, in which conclusions are drawn, offering a critical analysis of the re-

sults obtained.

Problem Definition

Henceforth, we denote the norm-2 ||—||, with the generic norm symbol ||—||.
Given X € Rm+mxm 4 c RM1 we want to find

Xw — @H

min
w

2.1 QR

By performing a QR factorization on X we can reformulate the problem as follows:

min Xw—g)H = min HQRw—@H

with @ € R(m+m)x(m+n) heing an orthogonal matrix and R € R(™tM*™ being an

upper triangular matrix. Knowing that R;; =0, Vi >j, i=1,...,m+n, j=

1,...,m, we can write
R
R= 00 , Ry € R™™

Q = |:Q0 Qc:| 5 QO c R(m—’_n)Xm’ Qc c R(m+n)><n

Since orthogonal matrices preserve norm-2, we have:

min |QRw — j|| = min [|QT(QRw —§)|| =
min [|Q"QRw — Q|| =
min ||Rw — QT@

w

min Fo w — QOT i
w I 0 QZ
. _Row - Q%@

min -
vl —QcY

The entries of the second block —QT4 do not depend on w, meaning that they will
appear in the norm independently from w. Thus, we can simplify the problem and

solve the triangular system
Row—Qfi=0 < Row=@Q}79
provided that Ry is invertible.

Ry is invertible <— X has full column rank <= XTX = 0.

Ry is invertible and the triangular system can be solved via backsubstitution. This

claim is proved in the last section.

2.2 L-BFGS

We can define ,
gw) = fw)’ = [&w g (2.1

and reformulate the problem equivalently in terms of g(w), since it is monotonic.

2

~
~

Xw—19

min g(w) = min = min (Xw — Q)T(Xw —)

The gradient of g with respect to w is
Vg(w) = 2X" (Xw — §)

Likewise the gradient of f(w) is as follows:

Vf(w)= L XT(Xw—gj)

~
~

Xw—1y9

but gives much worse performance since it is no longer quadratic.

The function is L-smooth since Yw, w’ € R™, with w # w':

IVg(w) = Vg(w)|| < Ljlw—w||
PR HXT(Xw —w') = XT(Xw' —)| < L|jw—w/|
— XTX(w—w)|| < Ljw—w|
— | X7 o = ') < Ll =)
— HXTX <L

The function g is also strongly convex since V2g(w) = XTX » 0.

The tomography of g(w) with respect to the direction p is:

6(a) = (X(w+ap) =) - (X(w+ap) — §)

d RPN - A
gf;a) =20l XTXp — 20" Xp + 20p" X Xp
Q
d*¢(a) T T v
=2 XTX 2.2
2 = X (2.2)
Since de‘z;(f) ig constant, the tomography is simply a parabola and since XTX

is positive definite, the dot product (p,p)xr ¢ is always positive and the parabola

always has a minimum. The minimum is found by solving % for O:

B QTX]) — wT)E'TXp
pTXTXp

Q'min

2.3 Conditioning

A

We check the condition number x(X) when the regularization term A > 0 varies.

X

K(X) =

HXTH _ 2 _ Amax
Om)\min
with o1, 0, being respectively the largest and smallest singular values of X and

Amaxs Amin being the largest and smallest eigenvalues of XTX.
Knowing that X7X = X X7 + A2I,,, we have that

)\max =)\l +)\2
)\min =)\m + >\2

with Ai, A, being the largest and smallest eigenvalues of X X7, which are trans-
lated by \? as a result of adding A1, (Lemma 2)

In Lemma 3 we show that A,, = 0 and conclude that /{(X) scales linearly with %:

K(X)_ /)\max_ >\1+>\2_\/)\1+)\2_\/)\1+>\2
B)\min_)\m+)\2_ \/ﬁ B)\

VAN

For lambda close to zero we have ¥——— ~ O (%) This property is witnessed

in Figure 2.1, which is in logarithmic scale:

Condition humber of X* with respect to A

\,\
14
10 .
.
\,\
11
10 .
.
= AN
Z 1 RN
.
\,\
5
10 .
.
\,\
2
10 .
.
N
107" 107" 107 107 107 10’ 10 10"
A

Figure 2.1: K(X) for different values of A

Algorithms

3.1 QR

The algorithm has been implemented considering that the input matrix A € R™*™
where m may be different from n, namely it can be rectangular horizontally or
vertically. In this version we store in a proper data structure a matrix T € m x n

of the following form (m > n in this example):

* PR *
T = (Ui7j)z’,j = *
ul u2 .. un

u, ER™F 1 <k<n

and the values of the diagonal of R in a vector d € R™. The * entries are elements
computed in the QR factorization belonging to the upper triangular matrix, yielded
by line 6 of Algorithm 1. In this way we are allowed to lazily perform the products
Qy and QTy by means of the householder vectors u; .. ., u, that we stored. On the
other hand, to compute a product between the upper part of T and an input vector
we reconstruct the upper triangular matrix by taking element v;; such that j > i
and attach the vector d as the diagonal of the resulting matrix. The zeros of the

matrix R are ignored.

Algorithm 1: Thin QR
Input : A e R™*"
Output: Q € R™*™ R e R™™ implicit QR factorization of A

T = copy(A)

d = zeros(min(m,n))

=

N

3 for ke l...min(m,n) do

4 Uk, Sk = householder_vector(Y[k : m, k])

5 di = S,

6 | Yk:mk+1:n="k:mk+1:n]—2uu"Tk:mk+1:n])
7 Tk :m, k| = uy

8 end

9 return Y, d

Algorithm 2: householder_vector

Input :z € R?
Output: u € R?, s € R householder vector of =

1s =[]

2 if z; > 0 then
3 ‘ s=—s

4 end

5 u = copy(x)

6 Up = U] — S

7 u=u/|ull

8 return u, s

We assume m > n as the case n > m is similar for the complexity analysis.
The time complexity of this algorithm is 9(mn2) R 0(n3), because m ~ n in (P).
We will see in section Experiments that the running time scales linearly with m

as expected, where m is the size of X.

3.2 L-BFGS

We follow the syntax from Numerical Optimization[3] and define fy = f(xx)

Algorithm 3: Limited Memory BFGS

1

2

3

4

5

9

10

11

12

13

14

15

16

17

18

19

20

21

Input :f:R"” — R, x € R", m memory, € tolerance
Output: x* ending point, f(x*), Vf(x*)

k=0

while Vf, > eV f; do

if storage is empty then
| HY) =1

else

HO — Wr-1sk-1)
‘ k lyk—11?

Calculate py, = HV fi with Algorithm 4

Choose oy, satisfying the Armijo-Wolfe conditions or with exact line
search

Th1 = T + QxPr

Sk = Th+1 — Tk

Y = Vi1 — Vi

curvature = (yy, Sk)

pr = curvature™!

if curvature < 1076 then

free the storage and start again from gradient descent

else

Discard the vector pair {Sg_m;, Yk—m, Pk_m } from storage

Save Sk, Yk, Pr

kE=k+1

end

return z, fi, Vfi

Algorithm 4: Limited Memory BFGS - Two-Loop Recursion

1q=Vf

2 fori=(k—-1),...,(k—m) do
3 | ai=pisiq

4 q4=q— aY;

5 end

6 1= Hq

7 fori=(k—m),...,(k—1) do
s | B=pylr

o | r=r+s;(a;—p)

10 end

11 return —r

In our implementation we keep the triplets (s, yx, px) in a circular buffer with
capacity m and the values of «; in Algorithm 4 in a stack such that no explicit
indices are needed.

In case the curvature of the function is too small, we free the storage and restart
with a gradient step.

We prefer using an exact line search to compute the step size over an inexact

line search since the computational cost for our problem is lesser.

Convergence

To prove that the implemented method converges to the global minimum of the
function we have to optimize, we follow [1] and state the following assumptions

about our problem:
1. feC?
2. The level sets £ = {x € R" | f(z) < f(x0)} is convex
3. 3 My, M, € RT such that

My |2|* < 27G(w)2 < Me |12

Vze R" and Vo € L

We follow the publication’s notation and define:

From Taylor’s theorem:

yr = Gragpr, = Gisy, (3.1)

The first assumption for our problem follows from the definition. The second
assumption is proved by Equation 2.2. The third assumption is also a consequence
of the fact that the hessian of f is constant.

Theorem. Let By be any symmetric positive definite initial matrix, and let xq be
a starting point for which the Assumptions 1, 2 and 3 hold, then the sequence xy,
generated by the L-BFGS algorithm converges to the minimizer * of f linearly. [J
Proof: Using Equation 3.1 and Assumption 3:

M ||sell” < yisi < My |||

and:) .
lyell” sk Gis

y;{sk sféksk
Both trace and determinant can be expressed in terms of the trace and determinant

of the starting matrix from which the approximate hessian is constructed:
tI'(Bk+1> S tr(B,go)) + ?7~”LM2 S M3

m-1 m
M
det(Byy1) = det(B”) - y’—si > det (B,ﬁo) (ﬁ)) > M,
3

where m is the memory size and Mz and M, are chosen appropriately in R*.

From these two bounds we have that for some constant § > 0:

STBkSk
cos(@,) = —EE°F > 5
O = e TBrsll =

10

Since with exact line search the Armijo condition f(zy + agpr) < f(zr) +
miaxV f(xy) is always satisfied if the constant m; does not exclude the minimum
x, and since the strong Wolfe condition ||V f(zx + axpr)|| < ms ||V f(zk)] is also
always satisfied since ||V f(zy + agpr)|| = O(u), follows from the two conditions

and Assumptions 1 and 2 that:

i) = f(x.) < (1= ceos®(0k)(f (i) — f(2.)))
— flan) = f(z.) < (1= - 8)(f(20) — f(x.))
= flan) = flz.) < 5 (f(@o) = f(z.)

for some r € [0,1). Using Assumption 3:

1
Myl — P < fo) — f()
(1/2)
— —on|| < 2 Qf(l"o)—f(il?*)
R e e
so the sequence {z}} is linearly convergent. |

The implementation of L-BFGS that uses Armijo-Wolfe line search also satisfies

the assumptions so it also converges linearly to x,.

11

Experiments

In this chapter we present the results of the experiments run on both algorithms as
well as a comparison of the two methods in terms of accuracy and time scalability.

To test the behaviour of the two methods we handle both cases in which the
matrix X is well-conditioned, with x(X) = 5, and ill-conditioned, with x(X) ~
5 x 10°. To accomplish so, we randomly generated the matrix X forcing its values
to be in the range [—1, 1], the dimensions m = 1000 and n = 20 (except for time
and memory scalability tests), and, as we have seen in section 2.3, since we can
control the conditioning directly with the hyperparameter \, we choose for the first
case A = 10~ and for the latter A = 10712

For the QR factorization we check how the relative error and residual change
with respect to different values of A. Then, we confirm the backward stability of
the decomposition over different values of A and check its forward stability as well.

For what concerns L-BFGS we fix the relative tolerance ¢ = 10714, the memory
size k = 7 and the maximum number of function evaluations to 200, knowing that
the function we have to optimize can be easily optimized by the method.

The last kind of tests we present concerns the scalability of the methods in
terms of time and memory, which has been compared by modifying the matrix
X e Rmtm)xm by generating random matrices with increasing m and n separately.
As mentioned before, we brought this experiment to the case in which X is either
ill-conditioned or well-conditioned. In the case of the thin-QR factorization we
expect a linear dependency between the number of rows and the time needed to
converge to the optimal solution, assuming a fixed number of columns. If instead
we vary the number of columns we expect a quadratic dependency.

In section 4.4 we first explore better the effect of the memory size for L-BFGS
and then we provide a deeper comparison of other Quasi-Newton methods we
manually implemented (even if not really required by the project instructions).

All tests have been executed with the benchmark library

BenchmarkTools.j1[4] which ignores startup and compilation time and re-

12

peated 10 times in order to get accurate estimates.

41 QR

Since we know from theory that the QR decomposition is backward stable, we

(B AQ I~ ~ u. Or more explicitly that for QR = X +6X, Hi):|||‘ = O(u).

The results in Flgure 4.1a show a decreasing trend for relative error and residual

expect that

when increasing A and hence decreasing the condition number x(X). The errors
are acceptable even for the smallest lambda: A = 10716, E(X) ~ 5 x 10%. The
algorithm is backward stable as well, as it can be noticed from the green part of
the plot.

To check the forward error we QR-decomposed the original matrix X to get ()
and R and then we perturbed it with a random matrix multiplied by a factor
6 = 107'%. Then, we ran another QR-decomposition on the perturbed version of
X to get the factors Q and R. Finally, we evaluated HQ QH and [T i , that are
both much larger, as reported in Figure 4.1b. The forward error on) is slightly

worse than on R due to its orthogonality property that needs to be maintained in
the factorization, fixing /{(X). However, we can see a generally decreasing trend

of the forward error with respect to the condition number of the matrix X,

QR errors with respect to A QR forward error with respect to A

ror on Q
R

orward
orward

(a) QR decomposition errors and backward (b) QR factorization forward stability on
stability for different \ Q@ and R for different X

Figure 4.1: Errors and scalability of the QR decomposition for different values of
A

13

4.2 L-BFGS

For the first experiment regarding this algorithm we compute the relative gap,
the residual and the number of iterations employed by the algorithms to converge.

The relative gap is defined as
Jw — w]]

[
where w is the solution found by our algorithm and w* is Julia’s ground truth
coming from its standard linear system solver.

The residual, instead, is defined as

Xw — QH

~

191

A

The results are shown in Figure 4.2, satisfying constraints we imposed on x(X).
It is evident from the plots that the convergence of the method is linear and that

it is able to compute a relatively good solution in a small number of iterations.

L-BFGS convergence on ill-conditioned matrix L-BFGS convergence on well:

0 5 10 15 20 0
‘‘‘‘‘‘‘‘‘‘

(a) Ill-conditioned matriz (b) Well-conditioned matriz

Figure 4.2: ||V f||, Residual, Relative Error of L-BFGS execution on ill and well-
conditioned matrices

The other test we propose regards checking the convergence of the method,
when using different line search algorithms. We checked how the gradient norm
changes when using Exact Line Search and Armijo-Wolfe Line Search only on the

well-conditioned matrix.

14

L-BFGS ExactLS vs AWLS gradient norm on well-conditioned matrix

6 — AWLS
—— ExactlS

Gradient Norm

0 25 50 75 100 125 150 175 200

Iterations

Figure 4.3: Line Search algorithms comparison

From Figure 4.3 we can notice that the exact line search behaves better than
the inexact line search because of the nature of the function we are optimizing.

AWLS computes a step size which may lead to instability, but does converge.

4.3 Comparison between QR and L-BFGS

The tests have been performed by fixing one between m = 200 and n = 50 and
varying the other dimension from an initial value of 500 to a value of 5500, at in-
tervals of 500. The results of fixing m and varying n be summarized in Figure 4.4,
which shows a linear growth of running time with increasing n for the QR decom-
position and a better performance for L-BFGS, in both the ill and well-conditioned
case. The allocated memory is consistent and on the same trend as the running

time as expected.

15

QR vs LBFGS time and memory scalability on ill-conditioned matrix QR vs LBFGS time and memory scalability on well-conditioned matrix

—— Mean Time QR —— GiB Allocation QR —— Mean Time QR —— GiB Allocation QR

0171 Standard Deviation QR —— GiB Allocation BFGS 0474 Standard Deviation QR —— GiB Allocation BFGS
—— Mean Time L-BFGS - 00t —— Mean Time L-BFGS o 001
Standard Deviation L-BFGS / i Standard Deviation L-BFGS / I

s / 0.15- /

0124 // L 003 0.12- //7 003
007~ // roe 007- /// o
0.05- // oo 0.05- /./

003- / 003- // .

time (s)

°

3
memory (GiB)

time (s)

°

3
memory (GiB)

000 1000 2000 30700 V 4000 5000 000 000 1000 2000 3000 V 40‘00 5000 000
(a) Ill-conditioned matriz (b) Well-conditioned matriz

Figure 4.4: Time and Memory scalability comparison of QR and L-BFGS on ill
and well-conditioned matrices, varying n

Instead, if we fix n and let m vary, we get the following curves as shown in
Figure 4.5. Both the running time and the allocated memory of QR grows more

or less quadratically with the number of columns, confirming what the theory

QR vs LBFGS time and memory scalability on ill-conditioned matrix QR vs LBFGS time and memory scalability on well-conditioned matrix
120.00 - —— Wiean Time QR —— GiBAllocation QR ~093 12000 —— Wiean Time QR —— GiBAllocation QR ~093
Standard Deviation QR —— GiB Allocation BFGS Standard Deviation QR —— GiB Allocation BFGS
—— Mean Time L-BFGS —— Mean Time L-BFGS
100.00 - Standard Deviation L-BFGS | 100.00 - Standard Deviation L-BFGS

/, 075 / 075
80.00 - / 80.00 - /
L ?/ -056

e

S
b4
B
memory (GiB)

memory (GiB)

time (s)
3
8
N
S
2
g
time (s)
3
8

40.00 40.00 - /
20.00 /. 019 20.00 - /./ 01
— L
000- == = 000 0.00- —_— 0.00
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
(a) Ill-conditioned matriz (b) Well-conditioned matriz

Figure 4.5: Time and Memory scalability comparison of QR and L-BFGS on ill
and well-conditioned matrices, varying m

For QR the allocated memory is in the order of MiB even in the worst case
while L-BFGS allocates much less memory, in the order of KiB.
The conditioning of the matrix has no impact on the time taken to compute a

solution for the two algorithms compared, but rather has an impact for L-BFGS in

16

the quality of the solution when dealing with a very flat function (small A). When
the function is flat it means that its curvature is low and the gradients change
slowly, so the algorithm struggles to rapidly descent towards the minimum with a

reasonable relative error.

4.4 Other Experiments

4.4.1 The Effect of the Memory Size

It is interesting to check the behaviour of L-BFGS when changing the memory
size. We compare the relative error decrease at each iteration with a memory size

that varies from 1 to 11, as shown in Figure 4.6:

L-BFGS relative error for different memory sizes on ill-conditioned matrix L-BFGS relative error for different memory sizes on well-conditione

(a) Ill-conditioned matriz (b) Well-conditioned matriz

Figure 4.6: The effect of the memory size

In accordance with the suggestions provided by [3], the memory size k should
be chosen such that 3 < k < 20, as it is empirically a good trade-off between
number of function evaluations and number of additional operations required to
reconstruct the hessian with the two loop formula (algorithm 4). However, since
the function that has to be optimized is quadratic, the algorithm is fast at finding
the optimal solution more or less independently of the memory size, but depends
still on the curvature x(X) for the convergence. When the memory size is 1, the
algorithm is a normal gradient descent and still reaches similar convergence rate

with respect to higher memory sizes. For higher memory sizes the convergence rate

17

is almost indistinguishable for the well-conditioned case (Figure 4.6b). However,
for the ill-conditioned case, shown in Figure 4.6a, the algorithm can still converge
in 16 iterations without depending on the memory size k, but the relative error
is constant in each different setting. This is the consequence of the fact that
the algorithm was terminating in a flatter region in which the curvature is so
low that satisfies the stopping criterion imposed on the gradient, but with a bad

approximation of the optimum.

4.4.2 A Comparison of Quasi-Newton Methods

To further check the behaviour of our implementation of L-BFGS, we implemented
and tested a version of BFGS. In the beginning of this section we provide two
additional tests, performed only on well-conditioned matrices and in which we
compare the two solvers together. As far as the setup is concerned, we stick to the
default setup stated in chapter 4 and for BFGS we set the tolerance to the same
as L-BFGS. The first test is shown in Figure 4.7a and shows how for the least
squares problem the two algorithms are almost identical in terms of convergence
rate. In the plot we have the relative error, residual and gradient norm to be
almost equal between the two algorithms. To understand deeply and check the
differences in the implementation, we also checked the time and memory scalability.
It is not surprising that, as Figure 4.7b suggests, BFGS is much slower in finding
the optimum than its limited version, even for this small optimization problem.
This aspect reflects the theory and confirms that this method is more expensive

in terms of time and memory with respect to L-BFGS.

18

BFGS vs L-BFGS gradient norm on well-conditioned matrix BFGS vs L-BFGS time and memory scalability on well-conditioned matrix
12.000 -
BFGS Error
—— BFGS Gradient
BFGS Residual
—— LBFGS Error 10.000 -
LBFGS Gradient

aaaaaaaaaaaaa

8.000 -

2 6000-

4,000 -

time (s)
[0}
&
\TA
N
3 3
memory (B

° ~ ./ 186
2.000 - / /
/.é// —— Bytes Allocation BFGS 7093
e —— Bytes Allocation L-BFGS
0 5 10 15 20 25 0000~ 7/1000 2000 3000 4000 5000 000
(a) Convergence rate (b) Time and memory scalability

Figure 4.7: BFGS vs L-BFGS

To enhance and point out better the effectiveness of the implementation, we
analyze other Quasi-Newton methods. We provide a final comparison between
a relevant subset, in particular the final comparison consists of confronting L-
BFGS, BFGS, DFP and SR1. Both DFP and BFGS are tested in its variants
with the Dogleg alternative to line search as well [2]. These algorithms have been
implemented and finally optimized in terms of efficiency in memory allocations,
since they are prone to huge memory allocation.

The plot in Figure 4.8 shows the running time of the algorithms on growing size
well-conditioned matrices. In Figure 4.8a, we can see that combining the update
formula (BFGS and DFP) with the Dogleg (trust region) brings a lot of inefficiency
in finding the minimum of that region since with line search an exact solution is
used. In the plot in Figure 4.8b we can have a clearer visualization of the difference
in efficiency between the methods, since the running time when using the Dogleg is
much higher and worsens the plot. In particular, the results stick with the theory
from which we expect exact line search to be better than dogleg method for finding
appropriate steps; we expect also for L-BFGS to be the fastest method, followed
by BFGS and SR1 that are almost equally efficient on average. The slowest is DFP

that is more than twice slower than the two previously mentioned algorithms.

19

Quasi-Newton methods running time on well-conditioned matrix Quasi-Newton methods running time on well-conditioned matrix

5000 _._ _pgFGs —— LBFGS

—— BFGS 1200 - —.— BrGs
—— DFP —— DFP
SR1 SR1
40.00 DFP with Dogleg 10.00 Y,

—— BFGS with Dogleg /
8.00
_ 30.00 _
g g 6.00
20.00 i
— 400 //
10.00 /é/ /
- - 200 e
000 1000 2000 3000 4000 5000 000 1000 2000 3000 4000 5000
(a) With Dogleg (b) Without Dogleg

Figure 4.8: Quasi-Newton methods running time comparison

The last test regards the memory allocation provided by the algorithms. This
test is the equivalent of the time scalability, but the metric is the number of allo-
cated bytes on average by the algorithms. Our implementation has been optimized
as much as possible, for instance by using Julia’s in-place operators in order to
minimize the number of allocations. The last plot we display, in Figure 4.9, shows
the trend of increasing allocated bytes by the algorithms. Methods that converge
more slowly or use more memory per iteration, by using more complex update

rules, perform worse.

Quasi-Newton methods memory allocation on well-conditioned matrix

—— L-BFGS
— BFGS
—=— BFGS with Dogleg
13.04 —— DFP
DFP with Dogleg
11.18 SR

9.31 /

14.90

N

& .
Q
8
£ s /
— o
5.59 / /./
373 ////
./. / i —
1.86 = /./_/
—
0.00 _é:_//::.
) 1000 2000 3000 4000 5000

m

Figure 4.9: Memory allocation of the different Quasi-Newton methods

20

Concluding Remarks

An implementation of the thin-QR factorization and limited memory BFGS has
been presented, in particular with exact line search in order to solve more efficiently
the least squares problem. Convergence for both methods have been proven and
tested. An implementation of BFGS and DFP, with both exact line search and
trust region method using the dogleg method, and SR1 have been implemented
and tested. From the experiments it is pretty clear that L-BFGS is better than
all other Quasi-Newton methods for solving the least squares problem, even when
using a small parameter for the memory. Instead the QR method performs better

when solving for ill-conditioned matrices, but the memory usage is higher.

21

Proofs

Lemma 1. X has full column rank < XT7X =0 O
Proof: To show that X7X = XX7T + X2, = 0, A > 0, we can consider the
quadratic form x7(XTX + X21,,)z. Let B= XXT = 0.

v7(B 4 N1,)x = 2" Bx + Na' I,
= 27 Bz 4+ \? |z

Since B is positive semidefinite, we have 27 Bx > 0 Vo € R™. Additionally,
N||z]]? > 0 Vx # 0. Therefore, 27 (B + A1)z > 0 for all non-zero vectors x,
meaning that X7X = 0.

Lemma 2. o € Sp(4) <= (a+) € Sp(A+ \I) O
Proof: Av=av <= (A+MN)v=Av+ v=av+ X v=(a+ v [|
Lemma 3. The singular values of the matrix X X7, X € R™*"
are {o7...0%,0...0}, with o ... 0, being the singular values of X. O
Proof: Consider the Singular Value Decomposition of the rank n matrix X
X =Usv"
Y = diag(oy,...,0,) € R™*" Then
XXT =vzvTve'ut =Uss’'U
with
we! = diag(o?,...,02,0,...,0) € R™™
Hence, X X7 has exactly m singular values of which m — n are zeros. |

22

Bibliography

[1]

D. C. Liu and J. Nocedal, “On the limited memory bfgs method for large
scale optimization,” Mathematical Programming, vol. 45, no. 1-3, pp. 503—
528, Aug. 1989. DOI: 10.1007/b£f01589116.

N. Ampazis, S. Spirou, and S. Perantonis, “Training feedforward neural net-
works with the dogleg method and bfgs hessian updates,” in Neural Networks,
IEEE - INNS - ENNS International Joint Conference on, vol. 2, Los Alamitos,
CA, USA: IEEE Computer Society, Jul. 2000, p. 1138. DO1: 10.1109/IJCNN.
2000 . 8567827. [Online]. Available: https://doi . ieeecomputersociety .
org/10.1109/IJCNN.2000.857827.

J. Nocedal and S. J. Wright, Numerical Optimization, 2e. New York, NY,
USA: Springer, 2006.

J. Chen and J. Revels, “Robust benchmarking in noisy environments,” arXiv
e-prints, arXiv:1608.04295, Aug. 2016. arXiv: 1608.04295 [cs.PF].

23

https://doi.org/10.1007/bf01589116
https://doi.org/10.1109/IJCNN.2000.857827
https://doi.org/10.1109/IJCNN.2000.857827
https://doi.ieeecomputersociety.org/10.1109/IJCNN.2000.857827
https://doi.ieeecomputersociety.org/10.1109/IJCNN.2000.857827
https://arxiv.org/abs/1608.04295

	Introduction
	Problem Definition
	QR
	L-BFGS
	Conditioning

	Algorithms
	QR
	L-BFGS

	Experiments
	QR
	L-BFGS
	Comparison between QR and L-BFGS
	Other Experiments
	The Effect of the Memory Size
	A Comparison of Quasi-Newton Methods

	Concluding Remarks
	Proofs

