{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "include(\"../../L-BFGS/OracleFunction.jl\")\n", "include(\"../../L-BFGS/BFGS.jl\")\n", "include(\"../../utilities/genFunc.jl\")\n", "using .BFGS\n", "using .OracleFunction\n", "using LinearAlgebra, BenchmarkTools, CSV, DataFrames\n", "\n", "baseDir = joinpath(\"../\", \"results/LBFGS/comparison_BFGS/\")\n", "mkpath(baseDir);" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "LeastSquaresF{Float64, Main.OracleFunction.var\"#f#1\"{Matrix{Float64}, Vector{Float64}}, Main.OracleFunction.var\"#df#2\"{Matrix{Float64}, Vector{Float64}}}(OracleF{Float64, Main.OracleFunction.var\"#f#1\"{Matrix{Float64}, Vector{Float64}}, Main.OracleFunction.var\"#df#2\"{Matrix{Float64}, Vector{Float64}}}([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 … 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], Main.OracleFunction.var\"#f#1\"{Matrix{Float64}, Vector{Float64}}([0.6269851049934334 -0.9953855131718308 … 0.26819190323331954 -0.6780465661809252; -0.9332327939739362 0.8084805224537295 … 0.28452273460460176 0.9029306010736042; … ; 0.0 0.0 … 10.0 0.0; 0.0 0.0 … 0.0 10.0], [-10.186364190714537, -1.6231132115458327, 15.375526057866429, 1.5006156140417093, -14.546392908739245, -4.939853634188801, -0.2053418568399169, 20.47017872706546, 1.0276498922046493, -12.900436004701787 … 3.3479087325325874, 4.529977532247315, 9.395681468606902, -9.098074604739619, -8.545976276298948, 5.1912832757085265, -8.133605566489734, -7.81791180224994, 8.53647733342897, 0.2170916132884937]), Main.OracleFunction.var\"#df#2\"{Matrix{Float64}, Vector{Float64}}([0.6269851049934334 -0.9953855131718308 … 0.26819190323331954 -0.6780465661809252; -0.9332327939739362 0.8084805224537295 … 0.28452273460460176 0.9029306010736042; … ; 0.0 0.0 … 10.0 0.0; 0.0 0.0 … 0.0 10.0], [-10.186364190714537, -1.6231132115458327, 15.375526057866429, 1.5006156140417093, -14.546392908739245, -4.939853634188801, -0.2053418568399169, 20.47017872706546, 1.0276498922046493, -12.900436004701787 … 3.3479087325325874, 4.529977532247315, 9.395681468606902, -9.098074604739619, -8.545976276298948, 5.1912832757085265, -8.133605566489734, -7.81791180224994, 8.53647733342897, 0.2170916132884937])), [0.6269851049934334 -0.9953855131718308 … 0.26819190323331954 -0.6780465661809252; -0.9332327939739362 0.8084805224537295 … 0.28452273460460176 0.9029306010736042; … ; 0.0 0.0 … 10.0 0.0; 0.0 0.0 … 0.0 10.0], [-10.186364190714537, -1.6231132115458327, 15.375526057866429, 1.5006156140417093, -14.546392908739245, -4.939853634188801, -0.2053418568399169, 20.47017872706546, 1.0276498922046493, -12.900436004701787 … 3.3479087325325874, 4.529977532247315, 9.395681468606902, -9.098074604739619, -8.545976276298948, 5.1912832757085265, -8.133605566489734, -7.81791180224994, 8.53647733342897, 0.2170916132884937], [106.26650786511657 -1.0664727828949865 … 2.4445684049045426 0.0322174082238121; -1.0664727828949865 106.1318558809136 … -0.6525752258209305 1.2988114776625301; … ; 2.4445684049045426 -0.6525752258209305 … 106.71985607542891 0.16719323022752428; 0.0322174082238121 1.2988114776625301 … 0.16719323022752428 105.42561554395674], [2.0243350631400165 57.59287736844317 … 68.90017274988415 -7.460256118037204])" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# parameters for exact LS vs AWLS vs quadratic function \n", "λ = 10^1\n", "ϵ = 10^-14\n", "maxIters = 1:200\n", "m = 1000\n", "n = 20\n", "num_trials = 10\n", "\n", "gf = genFunc(:exactRandDataset, λ=λ, m=m, n=n)\n", "non_quadratic = OracleF(ones(size(gf[:X_hat], 2)),\n", " (x) -> norm(gf[:X_hat] * x - gf[:y_hat]),\n", " (x) -> inv(norm(gf[:X_hat] * x - gf[:y_hat])) * gf[:X_hat]' * (gf[:X_hat] * x - gf[:y_hat])\n", " )\n", "quadratic = OracleF(ones(size(gf[:X_hat], 2)),\n", " (x) -> norm(gf[:X_hat] * x - gf[:y_hat]) ^ 2,\n", " (x) -> 2 * gf[:X_hat]' * (gf[:X_hat] * x - gf[:y_hat])\n", " )\n", "ls = LeastSquaresF(gf)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Done trial 1\n", "Done trial 2\n", "Done trial 3\n", "Done trial 4\n", "Done trial 5\n", "Done trial 6\n", "Done trial 7\n", "Done trial 8\n", "Done trial 9\n", "Done trial 10\n" ] }, { "data": { "text/plain": [ "\"../results/LBFGS/comparison_BFGS/statisticsBFGS-iterations-m1000n20--error-norm.csv\"" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "### residual, relative error and norm of gradient with respect to iterations with exact line search\n", "using Statistics, CSV\n", "\n", "# Preallocate arrays\n", "num_iterations = length(maxIters)\n", "\n", "gradients = zeros(num_trials, num_iterations)\n", "residuals = zeros(num_trials, num_iterations)\n", "relative_errors = zeros(num_trials, num_iterations)\n", "\n", "for trial in 1:num_trials\n", "\n", " gf = genFunc(:exactRandDataset, λ=λ, m=m, n=n)\n", " ls = LeastSquaresF(gf)\n", "\n", " for (i, maxIter) in enumerate(maxIters)\n", " t = BroydenFletcherGoldfarbShanno(ls, ϵ=ϵ, MaxEvaluations=maxIter)\n", "\n", " relative_errors[trial, i] = norm(t[:x] - gf[:w_star]) / norm(gf[:w_star])\n", " residuals[trial, i] = norm(gf[:X_hat] * t[:x] - gf[:y_hat]) / norm(gf[:y_hat])\n", " gradients[trial, i] = norm(t[:grad])\n", " end\n", "\n", " println(\"Done trial \", trial)\n", " \n", "end\n", "\n", "# Calculate mean and standard deviation\n", "mean_relative = mean(relative_errors, dims=1)'\n", "std_relative = std(relative_errors, dims=1)'\n", "mean_residual = mean(residuals, dims=1)'\n", "std_residual = std(residuals, dims=1)'\n", "mean_gradient = mean(gradients, dims=1)'\n", "std_gradient = std(gradients, dims=1)'\n", "\n", "\n", "# Write results to CSV\n", "outputvsc = joinpath(baseDir, \"statisticsBFGS-iterations-m\" * string(m) * \"n\" * string(n) * \"--error-norm.csv\");\n", "\n", "accData = Dict(\n", " :maxiterations => Array{Int64}(undef, 0),\n", " :mean_relative => Array{Float64}(undef, 0),\n", " :std_relative => Array{Float64}(undef, 0),\n", " :mean_residual => Array{Float64}(undef, 0),\n", " :std_residual => Array{Float64}(undef, 0),\n", " :mean_gradient => Array{Float64}(undef, 0),\n", " :std_gradient => Array{Float64}(undef, 0)\n", ")\n", "\n", "# create dataframe with columns from arrays\n", "for maxIter ∈ maxIters\n", " push!(accData[:maxiterations], maxIter)\n", " push!(accData[:mean_relative], mean_relative[maxIter])\n", " push!(accData[:std_relative], std_relative[maxIter])\n", " push!(accData[:mean_residual], mean_residual[maxIter])\n", " push!(accData[:std_residual], std_residual[maxIter])\n", " push!(accData[:mean_gradient], mean_gradient[maxIter])\n", " push!(accData[:std_gradient], std_gradient[maxIter])\n", "\n", "end\n", "\n", "\n", "CSV.write(outputvsc, accData)\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Julia 1.9.3", "language": "julia", "name": "julia-1.9" }, "language_info": { "file_extension": ".jl", "mimetype": "application/julia", "name": "julia", "version": "1.9.3" } }, "nbformat": 4, "nbformat_minor": 2 }