{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "include(\"../QR/housQR.jl\")\n", "include(\"../utilities/genFunc.jl\")\n", "include(\"../L-BFGS/OracleFunction.jl\")\n", "include(\"../L-BFGS/LBFGS.jl\")\n", "include(\"../L-BFGS/BFGS.jl\")\n", "include(\"../L-BFGS/SR1.jl\")\n", "using .LBFGS\n", "using .BFGS\n", "using .SR1\n", "using .OracleFunction\n", "using .housQR\n", "using LinearAlgebra, BenchmarkTools, CSV, DataFrames\n", "\n", "baseDir = \"results/comparison\";\n", "mkpath(baseDir);" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# QR vs LBFGS running time comparison with respect to n, fixing m, on ill-conditioned matrix\n", "λ = 1e-12\n", "m = 200\n", "runs = 10\n", "\n", "# output csv\n", "outputvsc = joinpath(baseDir, \"QRvsLBFGS-n-m\" * string(m) * \"-illcond--time.csv\");\n", "accData = Dict(\n", " :n => Array{Float64}(undef, 0),\n", " :meantimeLBFGS => Array{Float64}(undef, 0),\n", " :stdtimeLBFGS => Array{Float64}(undef, 0),\n", " :meanallocsLBFGS => Array{Float64}(undef, 0),\n", " :meantimeQR => Array{Float64}(undef, 0),\n", " :stdtimeQR => Array{Float64}(undef, 0),\n", " :meanallocsQR => Array{Float64}(undef, 0)\n", " )\n", "\n", "for n ∈ (0:runs) .* 500 .+ 500\n", " gf = genFunc(:exactRandDataset, λ=λ, m=m, n=n)\n", "\n", " t_qr = @benchmark qrfact($gf[:X_hat]) \\ $gf[:y_hat] samples=10 evals=1\n", "\n", " ls = LeastSquaresF(gf)\n", "\n", " t_lbfgs = @benchmark LimitedMemoryBFGS($ls) samples=10 evals=1\n", " \n", " push!(accData[:n], n)\n", " push!(accData[:meantimeLBFGS], mean(t_lbfgs.times))\n", " push!(accData[:stdtimeLBFGS], std(t_lbfgs.times))\n", " push!(accData[:meanallocsLBFGS], mean(t_lbfgs.memory))\n", " push!(accData[:meantimeQR], mean(t_qr.times))\n", " push!(accData[:stdtimeQR], std(t_qr.times))\n", " push!(accData[:meanallocsQR], mean(t_qr.memory))\n", " println(\"Done: n \" * string(n))\n", " flush(stdout)\n", "end\n", "\n", "# CSV.write(outputvsc, DataFrame(accData));" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# QR vs LBFGS running time comparison with respect to n, fixing m, on well-conditioned matrix\n", "λ = 1e-4\n", "m = 200\n", "runs = 10\n", "\n", "# output csv\n", "outputvsc = joinpath(baseDir, \"QRvsLBFGS-n-m\" * string(m) * \"-wellcond--time.csv\");\n", "accData = Dict(\n", " :n => Array{Float64}(undef, 0),\n", " :meantimeLBFGS => Array{Float64}(undef, 0),\n", " :stdtimeLBFGS => Array{Float64}(undef, 0),\n", " :meanallocsLBFGS => Array{Float64}(undef, 0),\n", " :meantimeQR => Array{Float64}(undef, 0),\n", " :stdtimeQR => Array{Float64}(undef, 0),\n", " :meanallocsQR => Array{Float64}(undef, 0)\n", " )\n", "\n", "for n ∈ (0:runs) .* 500 .+ 500\n", " gf = genFunc(:exactRandDataset, λ=λ, m=m, n=n)\n", "\n", " t_qr = @benchmark qrfact($gf[:X_hat]) \\ $gf[:y_hat] samples=10 evals=1\n", "\n", " ls = LeastSquaresF(gf)\n", "\n", " t_lbfgs = @benchmark LimitedMemoryBFGS($ls) samples=10 evals=1\n", " \n", " push!(accData[:n], n)\n", " push!(accData[:meantimeLBFGS], mean(t_lbfgs.times))\n", " push!(accData[:stdtimeLBFGS], std(t_lbfgs.times))\n", " push!(accData[:meanallocsLBFGS], mean(t_lbfgs.memory))\n", " push!(accData[:meantimeQR], mean(t_qr.times))\n", " push!(accData[:stdtimeQR], std(t_qr.times))\n", " push!(accData[:meanallocsQR], mean(t_qr.memory))\n", " println(\"Done: n \" * string(n))\n", " flush(stdout)\n", "end\n", "\n", "# CSV.write(outputvsc, DataFrame(accData));" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Done: n 500\n", "Done: n 1000\n", "Done: n 1500\n", "Done: n 2000\n", "Done: n 2500\n", "Done: n 3000\n", "Done: n 3500\n", "Done: n 4000\n", "Done: n 4500\n", "Done: n 5000\n", "Done: n 5500\n" ] } ], "source": [ "# BFGS vs LBFGS running time comparison with respect to n, fixing m, on well-conditioned matrix\n", "λ = 1e-4\n", "m = 200\n", "runs = 10\n", "\n", "# output csv\n", "outputvsc = joinpath(baseDir, \"BFGSvsLBFGS-n-m\" * string(m) * \"--time.csv\");\n", "accData = Dict(\n", " :n => Array{Float64}(undef, 0),\n", " :meantimeLBFGS => Array{Float64}(undef, 0),\n", " :stdtimeLBFGS => Array{Float64}(undef, 0),\n", " :meanallocsLBFGS => Array{Float64}(undef, 0),\n", " :meantimeBFGS => Array{Float64}(undef, 0),\n", " :stdtimeBFGS => Array{Float64}(undef, 0),\n", " :meanallocsBFGS => Array{Float64}(undef, 0)\n", " )\n", "\n", "for i ∈ 0:runs\n", " n = 500 + i * 500\n", "\n", "\n", " t_lbfgs = @benchmark LimitedMemoryBFGS(ls) setup=(ls = (genFunc(:randDataset, λ=$λ, m=$m, n=$n) |> LeastSquaresF)) samples=10 evals=1\n", " t_bfgs = @benchmark BroydenFletcherGoldfarbShanno(ls) setup=(ls = (genFunc(:randDataset, λ=$λ, m=$m, n=$n) |> LeastSquaresF)) samples=10 evals=1\n", "\n", " push!(accData[:n], n)\n", " push!(accData[:meantimeLBFGS], mean(t_lbfgs.times))\n", " push!(accData[:stdtimeLBFGS], std(t_lbfgs.times))\n", " push!(accData[:meanallocsLBFGS], mean(t_lbfgs.memory))\n", " push!(accData[:meantimeBFGS], mean(t_bfgs.times))\n", " push!(accData[:stdtimeBFGS], std(t_bfgs.times))\n", " push!(accData[:meanallocsBFGS], mean(t_bfgs.memory))\n", " println(\"Done: n \" * string(n))\n", " flush(stdout)\n", "end\n", "\n", "CSV.write(outputvsc, DataFrame(accData));" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Done: m 500\n", "Done: m 1000\n", "Done: m 1500\n", "Done: m 2000\n", "Done: m 2500\n", "Done: m 3000\n", "Done: m 3500\n", "Done: m 4000\n", "Done: m 4500\n", "Done: m 5000\n", "Done: m 5500\n" ] } ], "source": [ "# BFGS vs LBFGS running time comparison with respect to m, fixing n, on well-conditioned matrix\n", "λ = 1e-4\n", "n = 50\n", "runs = 10\n", "\n", "# output csv\n", "outputvsc = joinpath(baseDir, \"BFGSvsLBFGS-m-n\" * string(n) * \"--time.csv\");\n", "accData = Dict(\n", " :m => Array{Float64}(undef, 0),\n", " :meantimeLBFGS => Array{Float64}(undef, 0),\n", " :stdtimeLBFGS => Array{Float64}(undef, 0),\n", " :meanallocsLBFGS => Array{Float64}(undef, 0),\n", " :meantimeBFGS => Array{Float64}(undef, 0),\n", " :stdtimeBFGS => Array{Float64}(undef, 0),\n", " :meanallocsBFGS => Array{Float64}(undef, 0)\n", " )\n", "\n", "for i ∈ 0:runs\n", " m = 500 + i * 500\n", "\n", "\n", " t_lbfgs = @benchmark LimitedMemoryBFGS(ls) setup=(ls = (genFunc(:randDataset, λ=$λ, m=$m, n=$n) |> LeastSquaresF)) samples=10 evals=1\n", " t_bfgs = @benchmark BroydenFletcherGoldfarbShanno(ls) setup=(ls = (genFunc(:randDataset, λ=$λ, m=$m, n=$n) |> LeastSquaresF)) samples=10 evals=1\n", "\n", " push!(accData[:m], m)\n", " push!(accData[:meantimeLBFGS], mean(t_lbfgs.times))\n", " push!(accData[:stdtimeLBFGS], std(t_lbfgs.times))\n", " push!(accData[:meanallocsLBFGS], mean(t_lbfgs.memory))\n", " push!(accData[:meantimeBFGS], mean(t_bfgs.times))\n", " push!(accData[:stdtimeBFGS], std(t_bfgs.times))\n", " push!(accData[:meanallocsBFGS], mean(t_bfgs.memory))\n", " println(\"Done: m \" * string(m))\n", " flush(stdout)\n", "end\n", "\n", "CSV.write(outputvsc, DataFrame(accData));" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# QR vs LBFGS running time comparison with respect to m, fixing n, on well-conditioned matrix\n", "λ = 1e-4\n", "n = 50\n", "runs = 10\n", "\n", "# output csv\n", "outputvsc = joinpath(baseDir, \"QRvsLBFGS-m-n\" * string(n) * \"-wellcond--time.csv\");\n", "accData = Dict(\n", " :m => Array{Float64}(undef, 0),\n", " :meantimeLBFGS => Array{Float64}(undef, 0),\n", " :stdtimeLBFGS => Array{Float64}(undef, 0),\n", " :meanallocsLBFGS => Array{Float64}(undef, 0),\n", " :meantimeQR => Array{Float64}(undef, 0),\n", " :stdtimeQR => Array{Float64}(undef, 0),\n", " :meanallocsQR => Array{Float64}(undef, 0)\n", " )\n", "\n", "# warm up\n", "qrfact([0. 1; 1 0]) \\ [1.; 1]\n", "\n", "for i ∈ 0:runs\n", " m = 500 + i * 500\n", " gf = genFunc(:exactRandDataset, λ=λ, m=m, n=n)\n", "\n", " t_qr = @benchmark begin\n", " QR = qrfact($gf[:X_hat])\n", " w = QR \\ $gf[:y_hat]\n", " end samples=10 evals=1\n", "\n", " ls = LeastSquaresF(gf)\n", "\n", " t_lbfgs = @benchmark begin\n", " LimitedMemoryBFGS($ls)\n", " end samples=10 evals=1\n", " \n", " push!(accData[:m], m)\n", " push!(accData[:meantimeLBFGS], mean(t_lbfgs.times))\n", " push!(accData[:stdtimeLBFGS], std(t_lbfgs.times))\n", " push!(accData[:meanallocsLBFGS], mean(t_lbfgs.memory))\n", " push!(accData[:meantimeQR], mean(t_qr.times))\n", " push!(accData[:stdtimeQR], std(t_qr.times))\n", " push!(accData[:meanallocsQR], mean(t_qr.memory))\n", " println(\"Done: m \" * string(m))\n", " flush(stdout)\n", "end\n", "\n", "CSV.write(outputvsc, DataFrame(accData));" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# QR vs LBFGS running time comparison with respect to m, fixing n, on ill-conditioned matrix\n", "λ = 1e-12\n", "n = 50\n", "runs = 10\n", "\n", "# output csv\n", "outputvsc = joinpath(baseDir, \"QRvsLBFGS-m-n\" * string(n) * \"-illcond--time.csv\");\n", "accData = Dict(\n", " :m => Array{Float64}(undef, 0),\n", " :meantimeLBFGS => Array{Float64}(undef, 0),\n", " :stdtimeLBFGS => Array{Float64}(undef, 0),\n", " :meanallocsLBFGS => Array{Float64}(undef, 0),\n", " :meantimeQR => Array{Float64}(undef, 0),\n", " :stdtimeQR => Array{Float64}(undef, 0),\n", " :meanallocsQR => Array{Float64}(undef, 0)\n", " )\n", "\n", "# warm up\n", "qrfact([0. 1; 1 0]) \\ [1.; 1]\n", "\n", "for i ∈ 0:runs\n", " m = 500 + i * 500\n", " gf = genFunc(:exactRandDataset, λ=λ, m=m, n=n)\n", "\n", " t_qr = @benchmark begin\n", " QR = qrfact($gf[:X_hat])\n", " w = QR \\ $gf[:y_hat]\n", " end samples=10 evals=1\n", "\n", " ls = LeastSquaresF(gf)\n", "\n", " t_lbfgs = @benchmark begin\n", " LimitedMemoryBFGS($ls)\n", " end samples=10 evals=1\n", " \n", " push!(accData[:m], m)\n", " push!(accData[:meantimeLBFGS], mean(t_lbfgs.times))\n", " push!(accData[:stdtimeLBFGS], std(t_lbfgs.times))\n", " push!(accData[:meanallocsLBFGS], mean(t_lbfgs.memory))\n", " push!(accData[:meantimeQR], mean(t_qr.times))\n", " push!(accData[:stdtimeQR], std(t_qr.times))\n", " push!(accData[:meanallocsQR], mean(t_qr.memory))\n", " println(\"Done: m \" * string(m))\n", " flush(stdout)\n", "end\n", "\n", "CSV.write(outputvsc, DataFrame(accData));" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Comparison of all quasi newton methods" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Done: m 500\n", "Done: m 1000\n", "Done: m 1500\n", "Done: m 2000\n", "Done: m 2500\n", "Done: m 3000\n", "Done: m 3500\n", "Done: m 4000\n", "Done: m 4500\n", "Done: m 5000\n", "Done: m 5500\n" ] } ], "source": [ "# Quasi newton methods running time comparison, fixing n and varying m, on ill-conditioned matrix\n", "λ = 1e-12\n", "n = 50\n", "runs = 10\n", "samples = 10\n", "\n", "# output csv\n", "outputvsc = joinpath(baseDir, \"Quasi-Newton-Comparison-time-illcond.csv\");\n", "accData = Dict(\n", " :m => Array{Float64}(undef, 0),\n", "\n", " :meantimeLBFGS => Array{Float64}(undef, 0),\n", " :stdtimeLBFGS => Array{Float64}(undef, 0),\n", " :accuracyLBFGS => Array{Float64}(undef, 0),\n", " :meanallocsLBFGS => Array{Float64}(undef, 0),\n", "\n", " :meantimeBFGS => Array{Float64}(undef, 0),\n", " :stdtimeBFGS => Array{Float64}(undef, 0),\n", " :accuracyBFGS => Array{Float64}(undef, 0),\n", " :meanallocsBFGS => Array{Float64}(undef, 0),\n", "\n", " :meantimeBFGSDogleg => Array{Float64}(undef, 0),\n", " :stdtimeBFGSDogleg => Array{Float64}(undef, 0),\n", " :accuracyBFGSDogleg => Array{Float64}(undef, 0),\n", " :meanallocsBFGSDogleg => Array{Float64}(undef, 0),\n", "\n", " :meantimeDFP => Array{Float64}(undef, 0),\n", " :stdtimeDFP => Array{Float64}(undef, 0),\n", " :accuracyDFP => Array{Float64}(undef, 0),\n", " :meanallocsDFP => Array{Float64}(undef, 0),\n", "\n", " :meantimeDFPDogleg => Array{Float64}(undef, 0),\n", " :stdtimeDFPDogleg => Array{Float64}(undef, 0),\n", " :accuracyDFPDogleg => Array{Float64}(undef, 0),\n", " :meanallocsDFPDogleg => Array{Float64}(undef, 0),\n", "\n", " :meantimeSR1 => Array{Float64}(undef, 0),\n", " :stdtimeSR1 => Array{Float64}(undef, 0),\n", " :accuracySR1 => Array{Float64}(undef, 0),\n", " :meanallocsSR1 => Array{Float64}(undef, 0)\n", " \n", " )\n", "\n", "\n", "for i ∈ 0:runs\n", " m = 500 + i * 500\n", "\n", " gf = genFunc(:randDataset, λ=λ, m=m, n=n)\n", " ls = LeastSquaresF(gf)\n", "\n", " t_lbfgs = @benchmark begin\n", " LimitedMemoryBFGS($ls)\n", " end samples=samples evals=1\n", " res_lbfgs = LimitedMemoryBFGS(ls)\n", "\n", "\n", " BFGS.BFGSorDFP = :BFGS\n", "\n", " t_bfgs = @benchmark begin\n", " BroydenFletcherGoldfarbShanno($ls)\n", " end samples=samples evals=1\n", " res_bfgs = BroydenFletcherGoldfarbShanno(ls)\n", "\n", " t_bfgs_dogleg = @benchmark begin\n", " BroydenFletcherGoldfarbShannoDogleg($ls)\n", " end samples=samples evals=1\n", " res_bfgs_dogleg = BroydenFletcherGoldfarbShannoDogleg(ls)\n", "\n", " BFGS.BFGSorDFP = :DFP\n", "\n", " t_dfp = @benchmark begin\n", " BroydenFletcherGoldfarbShanno($ls)\n", " end samples=samples evals=1\n", " res_dfp = BroydenFletcherGoldfarbShanno(ls)\n", "\n", " t_dfp_dogleg = @benchmark begin\n", " BroydenFletcherGoldfarbShannoDogleg($ls)\n", " end samples=samples evals=1\n", " res_dfp_dogleg = BroydenFletcherGoldfarbShannoDogleg(ls)\n", "\n", " t_sr1 = @benchmark begin\n", " SymmetricRank1($ls)\n", " end samples=samples evals=1\n", " res_sr1 = SymmetricRank1(ls)\n", " \n", " push!(accData[:m], m)\n", " push!(accData[:meantimeLBFGS], mean(t_lbfgs.times))\n", " push!(accData[:stdtimeLBFGS], std(t_lbfgs.times))\n", " push!(accData[:accuracyLBFGS], norm(res_lbfgs.x - gf[:w_star]) / norm(gf[:w_star]))\n", " push!(accData[:meanallocsLBFGS], mean(t_lbfgs.memory))\n", "\n", " push!(accData[:meantimeBFGS], mean(t_bfgs.times))\n", " push!(accData[:stdtimeBFGS], std(t_bfgs.times))\n", " push!(accData[:accuracyBFGS], norm(res_bfgs.x - gf[:w_star]) / norm(gf[:w_star]))\n", " push!(accData[:meanallocsBFGS], mean(t_bfgs.memory))\n", "\n", " push!(accData[:meantimeBFGSDogleg], mean(t_bfgs_dogleg.times))\n", " push!(accData[:stdtimeBFGSDogleg], std(t_bfgs_dogleg.times))\n", " push!(accData[:accuracyBFGSDogleg], norm(res_bfgs_dogleg.x - gf[:w_star]) / norm(gf[:w_star]))\n", " push!(accData[:meanallocsBFGSDogleg], mean(t_bfgs_dogleg.memory))\n", "\n", " push!(accData[:meantimeDFP], mean(t_dfp.times))\n", " push!(accData[:stdtimeDFP], std(t_dfp.times))\n", " push!(accData[:accuracyDFP], norm(res_dfp.x - gf[:w_star]) / norm(gf[:w_star]))\n", " push!(accData[:meanallocsDFP], mean(t_dfp.memory))\n", "\n", " push!(accData[:meantimeDFPDogleg], mean(t_dfp_dogleg.times))\n", " push!(accData[:stdtimeDFPDogleg], std(t_dfp_dogleg.times))\n", " push!(accData[:accuracyDFPDogleg], norm(res_dfp_dogleg.x - gf[:w_star]) / norm(gf[:w_star]))\n", " push!(accData[:meanallocsDFPDogleg], mean(t_dfp_dogleg.memory))\n", "\n", " push!(accData[:meantimeSR1], mean(t_sr1.times))\n", " push!(accData[:stdtimeSR1], std(t_sr1.times))\n", " push!(accData[:accuracySR1], norm(res_sr1.x - gf[:w_star]) / norm(gf[:w_star]))\n", " push!(accData[:meanallocsSR1], mean(t_sr1.memory))\n", " println(\"Done: m \" * string(m))\n", " flush(stdout)\n", "end\n", "\n", "CSV.write(outputvsc, DataFrame(accData));" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Done: m 500\n", "Done: m 1000\n", "Done: m 1500\n", "Done: m 2000\n", "Done: m 2500\n", "Done: m 3000\n", "Done: m 3500\n", "Done: m 4000\n", "Done: m 4500\n", "Done: m 5000\n", "Done: m 5500\n" ] } ], "source": [ "# Quasi newton methods running time comparison, fixing n and varying m, on well-conditioned matrix\n", "λ = 1e-4\n", "n = 50\n", "runs = 10\n", "samples = 10\n", "\n", "# output csv\n", "outputvsc = joinpath(baseDir, \"Quasi-Newton-Comparison-time-wellcond.csv\");\n", "accData = Dict(\n", " :m => Array{Float64}(undef, 0),\n", "\n", " :meantimeLBFGS => Array{Float64}(undef, 0),\n", " :stdtimeLBFGS => Array{Float64}(undef, 0),\n", " :accuracyLBFGS => Array{Float64}(undef, 0),\n", " :meanallocsLBFGS => Array{Float64}(undef, 0),\n", "\n", " :meantimeBFGS => Array{Float64}(undef, 0),\n", " :stdtimeBFGS => Array{Float64}(undef, 0),\n", " :accuracyBFGS => Array{Float64}(undef, 0),\n", " :meanallocsBFGS => Array{Float64}(undef, 0),\n", "\n", " :meantimeBFGSDogleg => Array{Float64}(undef, 0),\n", " :stdtimeBFGSDogleg => Array{Float64}(undef, 0),\n", " :accuracyBFGSDogleg => Array{Float64}(undef, 0),\n", " :meanallocsBFGSDogleg => Array{Float64}(undef, 0),\n", "\n", " :meantimeDFP => Array{Float64}(undef, 0),\n", " :stdtimeDFP => Array{Float64}(undef, 0),\n", " :accuracyDFP => Array{Float64}(undef, 0),\n", " :meanallocsDFP => Array{Float64}(undef, 0),\n", "\n", " :meantimeDFPDogleg => Array{Float64}(undef, 0),\n", " :stdtimeDFPDogleg => Array{Float64}(undef, 0),\n", " :accuracyDFPDogleg => Array{Float64}(undef, 0),\n", " :meanallocsDFPDogleg => Array{Float64}(undef, 0),\n", "\n", " :meantimeSR1 => Array{Float64}(undef, 0),\n", " :stdtimeSR1 => Array{Float64}(undef, 0),\n", " :accuracySR1 => Array{Float64}(undef, 0),\n", " :meanallocsSR1 => Array{Float64}(undef, 0)\n", " \n", " )\n", "\n", "\n", "for i ∈ 0:runs\n", " m = 500 + i * 500\n", "\n", " gf = genFunc(:randDataset, λ=λ, m=m, n=n)\n", " ls = LeastSquaresF(gf)\n", "\n", " t_lbfgs = @benchmark begin\n", " LimitedMemoryBFGS($ls)\n", " end samples=samples evals=1\n", " res_lbfgs = LimitedMemoryBFGS(ls)\n", "\n", "\n", " BFGS.BFGSorDFP = :BFGS\n", "\n", " t_bfgs = @benchmark begin\n", " BroydenFletcherGoldfarbShanno($ls)\n", " end samples=samples evals=1\n", " res_bfgs = BroydenFletcherGoldfarbShanno(ls)\n", "\n", " t_bfgs_dogleg = @benchmark begin\n", " BroydenFletcherGoldfarbShannoDogleg($ls)\n", " end samples=samples evals=1\n", " res_bfgs_dogleg = BroydenFletcherGoldfarbShannoDogleg(ls)\n", "\n", " BFGS.BFGSorDFP = :DFP\n", "\n", " t_dfp = @benchmark begin\n", " BroydenFletcherGoldfarbShanno($ls)\n", " end samples=samples evals=1\n", " res_dfp = BroydenFletcherGoldfarbShanno(ls)\n", "\n", " t_dfp_dogleg = @benchmark begin\n", " BroydenFletcherGoldfarbShannoDogleg($ls)\n", " end samples=samples evals=1\n", " res_dfp_dogleg = BroydenFletcherGoldfarbShannoDogleg(ls)\n", "\n", " t_sr1 = @benchmark begin\n", " SymmetricRank1($ls)\n", " end samples=samples evals=1\n", " res_sr1 = SymmetricRank1(ls)\n", " \n", " push!(accData[:m], m)\n", " push!(accData[:meantimeLBFGS], mean(t_lbfgs.times))\n", " push!(accData[:stdtimeLBFGS], std(t_lbfgs.times))\n", " push!(accData[:accuracyLBFGS], norm(res_lbfgs.x - gf[:w_star]) / norm(gf[:w_star]))\n", " push!(accData[:meanallocsLBFGS], mean(t_lbfgs.memory))\n", "\n", " push!(accData[:meantimeBFGS], mean(t_bfgs.times))\n", " push!(accData[:stdtimeBFGS], std(t_bfgs.times))\n", " push!(accData[:accuracyBFGS], norm(res_bfgs.x - gf[:w_star]) / norm(gf[:w_star]))\n", " push!(accData[:meanallocsBFGS], mean(t_bfgs.memory))\n", "\n", " push!(accData[:meantimeBFGSDogleg], mean(t_bfgs_dogleg.times))\n", " push!(accData[:stdtimeBFGSDogleg], std(t_bfgs_dogleg.times))\n", " push!(accData[:accuracyBFGSDogleg], norm(res_bfgs_dogleg.x - gf[:w_star]) / norm(gf[:w_star]))\n", " push!(accData[:meanallocsBFGSDogleg], mean(t_bfgs_dogleg.memory))\n", "\n", " push!(accData[:meantimeDFP], mean(t_dfp.times))\n", " push!(accData[:stdtimeDFP], std(t_dfp.times))\n", " push!(accData[:accuracyDFP], norm(res_dfp.x - gf[:w_star]) / norm(gf[:w_star]))\n", " push!(accData[:meanallocsDFP], mean(t_dfp.memory))\n", "\n", " push!(accData[:meantimeDFPDogleg], mean(t_dfp_dogleg.times))\n", " push!(accData[:stdtimeDFPDogleg], std(t_dfp_dogleg.times))\n", " push!(accData[:accuracyDFPDogleg], norm(res_dfp_dogleg.x - gf[:w_star]) / norm(gf[:w_star]))\n", " push!(accData[:meanallocsDFPDogleg], mean(t_dfp_dogleg.memory))\n", "\n", " push!(accData[:meantimeSR1], mean(t_sr1.times))\n", " push!(accData[:stdtimeSR1], std(t_sr1.times))\n", " push!(accData[:accuracySR1], norm(res_sr1.x - gf[:w_star]) / norm(gf[:w_star]))\n", " push!(accData[:meanallocsSR1], mean(t_sr1.memory))\n", " println(\"Done: m \" * string(m))\n", " flush(stdout)\n", "end\n", "\n", "CSV.write(outputvsc, DataFrame(accData));" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Julia 1.9.3", "language": "julia", "name": "julia-1.9" }, "language_info": { "file_extension": ".jl", "mimetype": "application/julia", "name": "julia", "version": "1.9.3" } }, "nbformat": 4, "nbformat_minor": 4 }