% $ biblatex auxiliary file $ % $ biblatex bbl format version 3.3 $ % Do not modify the above lines! % % This is an auxiliary file used by the 'biblatex' package. % This file may safely be deleted. It will be recreated by % biber as required. % \begingroup \makeatletter \@ifundefined{ver@biblatex.sty} {\@latex@error {Missing 'biblatex' package} {The bibliography requires the 'biblatex' package.} \aftergroup\endinput} {} \endgroup \refsection{0} \datalist[entry]{ynt/global//global/global/global} \entry{convergence_lbfgs}{article}{}{} \name{author}{2}{}{% {{hash=3773c3d5aaf3636d59b5d646468683ae}{% family={Liu}, familyi={L\bibinitperiod}, given={Dong\bibnamedelima C.}, giveni={D\bibinitperiod\bibinitdelim C\bibinitperiod}}}% {{hash=88a342d927bf795b0d92af8a5613da31}{% family={Nocedal}, familyi={N\bibinitperiod}, given={Jorge}, giveni={J\bibinitperiod}}}% } \strng{namehash}{016da99314d2fb9b907bb0a91cc52ecd} \strng{fullhash}{016da99314d2fb9b907bb0a91cc52ecd} \strng{fullhashraw}{016da99314d2fb9b907bb0a91cc52ecd} \strng{bibnamehash}{016da99314d2fb9b907bb0a91cc52ecd} \strng{authorbibnamehash}{016da99314d2fb9b907bb0a91cc52ecd} \strng{authornamehash}{016da99314d2fb9b907bb0a91cc52ecd} \strng{authorfullhash}{016da99314d2fb9b907bb0a91cc52ecd} \strng{authorfullhashraw}{016da99314d2fb9b907bb0a91cc52ecd} \field{sortinit}{1} \field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{journaltitle}{Mathematical Programming} \field{month}{8} \field{number}{1–3} \field{title}{On the limited memory BFGS method for large scale optimization} \field{volume}{45} \field{year}{1989} \field{pages}{503\bibrangedash 528} \range{pages}{26} \verb{doi} \verb 10.1007/bf01589116 \endverb \endentry \entry{Dogleg}{inproceedings}{}{} \name{author}{3}{}{% {{hash=f8ef8253cc84bb120a25129626f9bf75}{% family={Ampazis}, familyi={A\bibinitperiod}, given={N.}, giveni={N\bibinitperiod}}}% {{hash=ca32e2eb0ff1d4baff79927c876e24bc}{% family={Spirou}, familyi={S\bibinitperiod}, given={S.}, giveni={S\bibinitperiod}}}% {{hash=8857a8a8805ecdaf2863ccf5ebb56be2}{% family={Perantonis}, familyi={P\bibinitperiod}, given={S.}, giveni={S\bibinitperiod}}}% } \list{location}{1}{% {Los Alamitos, CA, USA}% } \list{publisher}{1}{% {IEEE Computer Society}% } \strng{namehash}{043d6ae890a3edd2e8dd411887d99c3c} \strng{fullhash}{043d6ae890a3edd2e8dd411887d99c3c} \strng{fullhashraw}{043d6ae890a3edd2e8dd411887d99c3c} \strng{bibnamehash}{043d6ae890a3edd2e8dd411887d99c3c} \strng{authorbibnamehash}{043d6ae890a3edd2e8dd411887d99c3c} \strng{authornamehash}{043d6ae890a3edd2e8dd411887d99c3c} \strng{authorfullhash}{043d6ae890a3edd2e8dd411887d99c3c} \strng{authorfullhashraw}{043d6ae890a3edd2e8dd411887d99c3c} \field{sortinit}{2} \field{sortinithash}{8b555b3791beccb63322c22f3320aa9a} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{abstract}{In this paper, we introduce an advanced optimization algorithm for training feedforward neural networks. The algorithm combines the BFGS Hessian update formula with a special case of trust region techniques, called the Dogleg method, as an altenative technique to line search methods. Simulations regarding classification and function approximation problems are presented which reveal a clear improvement both in convergence and success rates over standard BFGS implementations.} \field{booktitle}{Neural Networks, IEEE - INNS - ENNS International Joint Conference on} \field{issn}{1098-7576} \field{month}{7} \field{title}{Training Feedforward Neural Networks with the Dogleg Method and BFGS Hessian Updates} \field{volume}{2} \field{year}{2000} \field{pages}{1138} \range{pages}{1} \verb{doi} \verb 10.1109/IJCNN.2000.857827 \endverb \verb{urlraw} \verb https://doi.ieeecomputersociety.org/10.1109/IJCNN.2000.857827 \endverb \verb{url} \verb https://doi.ieeecomputersociety.org/10.1109/IJCNN.2000.857827 \endverb \endentry \entry{Numerical-Optimization-2006}{book}{}{} \name{author}{2}{}{% {{hash=88a342d927bf795b0d92af8a5613da31}{% family={Nocedal}, familyi={N\bibinitperiod}, given={Jorge}, giveni={J\bibinitperiod}}}% {{hash=c49efb16d3fa7eef002cc3620d42ab8a}{% family={Wright}, familyi={W\bibinitperiod}, given={Stephen\bibnamedelima J.}, giveni={S\bibinitperiod\bibinitdelim J\bibinitperiod}}}% } \list{location}{1}{% {New York, NY, USA}% } \list{publisher}{1}{% {Springer}% } \strng{namehash}{5b8fd28f6245ae8b0af119560622fa4f} \strng{fullhash}{5b8fd28f6245ae8b0af119560622fa4f} \strng{fullhashraw}{5b8fd28f6245ae8b0af119560622fa4f} \strng{bibnamehash}{5b8fd28f6245ae8b0af119560622fa4f} \strng{authorbibnamehash}{5b8fd28f6245ae8b0af119560622fa4f} \strng{authornamehash}{5b8fd28f6245ae8b0af119560622fa4f} \strng{authorfullhash}{5b8fd28f6245ae8b0af119560622fa4f} \strng{authorfullhashraw}{5b8fd28f6245ae8b0af119560622fa4f} \field{sortinit}{2} \field{sortinithash}{8b555b3791beccb63322c22f3320aa9a} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{edition}{2e} \field{title}{Numerical Optimization} \field{year}{2006} \endentry \entry{BenchmarkTools}{article}{}{} \name{author}{2}{}{% {{hash=69bd6c70a08a67d2841abb1b24a5ccfa}{% family={{Chen}}, familyi={C\bibinitperiod}, given={Jiahao}, giveni={J\bibinitperiod}}}% {{hash=d8a5df654714218c1b828ffab66545f1}{% family={{Revels}}, familyi={R\bibinitperiod}, given={Jarrett}, giveni={J\bibinitperiod}}}% } \strng{namehash}{9162f41ecdba576d7faa1a6d6e27bc25} \strng{fullhash}{9162f41ecdba576d7faa1a6d6e27bc25} \strng{fullhashraw}{9162f41ecdba576d7faa1a6d6e27bc25} \strng{bibnamehash}{9162f41ecdba576d7faa1a6d6e27bc25} \strng{authorbibnamehash}{9162f41ecdba576d7faa1a6d6e27bc25} \strng{authornamehash}{9162f41ecdba576d7faa1a6d6e27bc25} \strng{authorfullhash}{9162f41ecdba576d7faa1a6d6e27bc25} \strng{authorfullhashraw}{9162f41ecdba576d7faa1a6d6e27bc25} \field{sortinit}{2} \field{sortinithash}{8b555b3791beccb63322c22f3320aa9a} \field{labelnamesource}{author} \field{labeltitlesource}{title} \field{eid}{arXiv:1608.04295} \field{eprintclass}{cs.PF} \field{eprinttype}{arXiv} \field{journaltitle}{arXiv e-prints} \field{month}{8} \field{title}{{Robust benchmarking in noisy environments}} \field{year}{2016} \verb{eprint} \verb 1608.04295 \endverb \keyw{Computer Science - Performance,68N30,B.8.1,D.2.5} \endentry \enddatalist \endrefsection \endinput