\chapter{Proofs}\label{ch: proofs} \begin{mlemma}\label{proofs: fullcolumn}\label{proof:triangularsystem} $\hat{X} \text{ has full column rank } \iff \hat{X}^T\hat{X} \succ 0$ \end{mlemma} \begin{mproof} To show that $\hat{X}^T\hat{X} = XX^T + \lambda^2 I_m \succ 0$, $\lambda > 0$, we can consider the quadratic form $x^T (X^{T}X + \lambda^2 I_m) x$. Let $B = XX^T \succeq 0$. \begin{align*} x^T (B + \lambda^2 I_m) x &= x^{T}Bx + \lambda^2 x^{T}I_{m}x \\ &= x^{T}Bx + \lambda^2 \norm{x}^2 \end{align*} Since $B$ is positive semidefinite, we have $x^{T}Bx \geq 0\ \ \forall x \in \mathbb{R}^m$. Additionally, $\lambda^2 \|x\|^2 > 0\ \ \forall x \neq 0$. Therefore, $x^T (B + \lambda^2 I_m) x > 0$ for all non-zero vectors $x$, meaning that $\hat{X}^T\hat{X} \succ 0$. \end{mproof} \begin{mlemma}\label{proof:eigenvalues_translation} $\alpha \in Sp(A) \iff (\alpha + \lambda) \in Sp(A + \lambda I)$ \end{mlemma} \begin{mproof} $Av = \alpha v \iff (A + \lambda I)v = Av + \lambda v = \alpha v + \lambda v = (\alpha + \lambda)v$ \end{mproof} \begin{mlemma}\label{proofs: eigenvalues} The singular values of the matrix $XX^T, X \in \mathbb{R}^{m \times n}$\newline are $\{\sigma_1^2 \dots \sigma_n^2, 0 \dots 0\}$, with $\sigma_1 \dots \sigma_n$ being the singular values of $X$. \end{mlemma} \begin{mproof} Consider the Singular Value Decomposition of the rank $n$ matrix $X$ \[ X = U \Sigma V^T \] $\Sigma = \diag(\sigma_1, \dots, \sigma_n) \in \mathbb{R}^{m \times n} $ Then \[ XX^T = U \Sigma V^T V \Sigma^T U^T = U \Sigma \Sigma^T U \] with \[ \Sigma \Sigma^T = \diag(\sigma_1^2, \dots, \sigma_n^2, 0, \dots, 0) \in \mathbb{R}^{m \times m} \] Hence, $XX^T$ has exactly $m$ singular values of which $m-n$ are zeros. \end{mproof} %%% Local Variables: %%% mode: latex %%% TeX-master: "../main" %%% TeX-command-extra-options: "-shell-escape" %%% End: