using LinearAlgebra: I, eigvals function TestFunctions() # function TF = TestFunctions() # # Produces a cell array of function handlers, useful to test unconstrained # optimization algorithms. # # Each function in the array has the following interface: # # [ v , varargout ] = f( x ) # # Input: # # - x is either a [ n x 1 ] real (column) vector denoting the input of # f(), or [] (empty). # # Output: # # - v (real, scalar): if x == [] this is the best known lower bound on # the unconstrained global optimum of f(); it can be -Inf if either f() # is not bounded below, or no such information is available. If x ~= [] # then v = f(x). # # - g (real, [ n x 1 ] real vector) is the first optional argument. This # also depends on x. if x == [] this is the standard starting point of an # optimization algorithm, otherwise it is the gradient of f() at x, or a # subgradient if f() is not differentiable at x. # # - H (real, [ n x n ] real matrix) is the first optional argument. This # must only be specified if x ~= [], and it is the Hessian of f() at x. # If no such information is available, the function throws error. # # The current list of functions is the following: # # 1 Standard 2x2 PSD quadratic function with nicely conditioned Hessian. # # 2 Standard 2x2 PSD quadratic function with less nicely conditioned # Hessian. # # 3 Standard 2x2 PSD quadratic function with Hessian having one zero # eigenvalue. # # 4 Standard 2x2 quadratic function with indefinite Hessian (one positive # and one negative eigenvalue) # # 5 Standard 2x2 quadratic function with "very elongated" Hessian (a # very small positive minimum eigenvalue, the other much larger) # # 6 the 2-dim Rosenbrock function # # 7 the "six-hump camel" function # # 8 the Ackley function # # 9 a 2-dim nondifferentiable function coming from Lasso regularization # # 10 a 76-dim (nonconvex, differentiable) function coming from a fitting # problem with ( X , y ) both [ 288 , 1 ] (i.e., a fitting with only # one feature) using a "rough" NN with 1 input, 1 output, 3 hidden # layers of 5 nodes each, and tanh activation function # # 11 same as 10 plus a 1e-4 || x ||^2 / 2 ridge stabilising term # #{ # ======================================= # Author: Antonio Frangioni # Date: 08-11-18 # Version 1.01 # Copyright Antonio Frangioni # ======================================= #} TF = [] push!(TF, x -> genericquad([6 -2; -2 6], [10; 5], x)) # eigenvalues: 4, 8 push!(TF, x -> genericquad([5 -3; -3 5], [10; 5], x)) # eigenvalues: 2, 8 push!(TF, x -> genericquad([4 -4; -4 4], [10; 5], x)) # eigenvalues: 0, 8 push!(TF, x -> genericquad([3 -5; -5 3], [10; 5], x)) # eigenvalues: -2, 8 push!(TF, x -> genericquad([101 -99; -99 101], [10; 5], x)) # eigenvalues: 2, 200 # HBG: alpha = 0.0165 , beta = 0.678 push!(TF, rosenbrock) push!(TF, sixhumpcamel) push!(TF, ackley) push!(TF, lasso) push!(TF, myNN) push!(TF, myNN2) return TF end # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - function genericquad(Q, q, x::Union{Nothing, AbstractVecOrMat}) # generic quadratic function f(x) = x' * Q * x / 2 + q' * x if x === nothing # informative call if minimum(eigvals(Q)) > 1e-14 xStar = Q \ -q v = 0.5 * dot(xStar, Q * xStar) + dot(q, xStar) else v = -Inf end return (v, zeros(size(q)), zeros(size(Q))) else if size(x, 1) ≠ 2 || size(x, 2) ≠ 1 throw(ArgumentError("genericquad: x is of wrong size")) end v = 0.5 * dot(x, Q * x) + dot(q, x) # f(x) return (v, Q * x + q, Q) end end # genericquad # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - function rosenbrock(x::Union{Nothing, AbstractVecOrMat}) # rosenbrock's valley-shaped function # syms x y # f = @(x, y) 100 * ( y - x^2 )^2 + ( x - 1 )^2 # # diff( f , x ) # 2 * x - 400 * x * ( - x^2 + y ) - 2 # # diff( f , y ) # - 200 * x^2 + 200 * y # # diff( f , x , 2 ) # 1200 * x^2 - 400 * y + 2 # # diff( f , y , 2 ) # 200 # # diff( f , x , y ) # -400 * x if isnothing(x) # informative call v = 0 return (v, [-1, 1], [0 0; 0 0]) else v = 100 * (x[2] - x[1]^2 )^2 + ( x[1] - 1 )^2 # f(x) g = zeros(2) g[1] = 2 * x[1] - 400* x[1] * (x[2] - x[1]^2) - 2 g[2] = -200 * x[1]^2 + 200 * x[2] H = zeros(2, 2) H[1, 1] = 1200 * x[1]^2 -400 * x[2] + 2 H[2, 2] = 200 H[2, 1] = -400 * x[1] H[1, 2] = H[2, 1] return (v, g, H) end end # rosenbrock # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - function sixhumpcamel(x::Union{Nothing, AbstractVecOrMat}) # six-hump-camel valley-shaped function # syms x y # f = @(x, y) ( 4 - 2.1 * x^2 + x^4 / 3 ) * x^2 + x * y + 4 * ( y^2 - 1 ) * # y^2 # # diff( f , x ) # 2 * x^5 - ( 42 * x^3 ) / 5 + 8 * x + y # # diff( f , y ) # 16 * y^3 - 8 * y + x # # diff( f , x , 2 ) # 10 * x^4 - ( 126 * x^2 ) / 5 + 8 # # diff( f , y , 2 ) # 48 * y^2 - 8 # # diff( f , x , y ) # 1 if isnothing(x) # informative call v = -1.03162845349 return (v, [1, 1], [0 0; 0 0]) else v = ( 4 - 2.1 * x[1]^2 + x[1]^4 / 3 ) * x[1]^2 + x[1] * x[2] + 4 * ( x[2]^2 - 1 ) * x[2]^2 # f(x) g = zeros(2) g[1] = 2 * x[1]^5 - (42 * x[1]^3) / 5 + 8 * x[1] + x[2] g[2] = 16 * x[2]^3 - 8 * x[2] + x[1] H = zeros(2, 2) H[1, 1] = 10 * x[1]^4 - ( 126 * x[1]^2 ) / 5 + 8 H[2, 2] = 48 * x[2]^2 - 8 H[2, 1] = 1 H[1, 2] = H[2, 1] return (v, g, H) end end # sixhumpcamel # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - function ackley(xx::Union{Nothing, AbstractVecOrMat}) # syms x y # f = @(x, y) - 20 * exp( - 0.2 * sqrt( ( x^2 + y^2 ) / 2 ) ) ... # - exp( ( cos( 2 * pi * x ) + cos( 2 * pi * y ) ) / 2 ) ... # + 20 + exp(1) # ManuallyComputedfGH = true if isnothing(xx) # informative call v = 0 return (v, [2, 2], [0 0; 0 0]) else if size(xx, 1) ≠ 2 || size(xx, 2) ≠ 1 error("ackley: x is of wrong size") end if ManuallyComputedfGH # diff( f , x ) # pi*exp(cos(2*pi*x)/2 + cos(2*pi*y)/2)*sin(2*pi*x) + # (2*x*exp(-(x^2/2 + y^2/2)^(1/2)/5))/(x^2/2 + y^2/2)^(1/2) # # diff( f , y ) # pi*exp(cos(2*pi*x)/2 + cos(2*pi*y)/2)*sin(2*pi*y) + # (2*y*exp(-(x^2/2 + y^2/2)^(1/2)/5))/(x^2/2 + y^2/2)^(1/2) # # diff( f , x , 2 ) # # (2*exp(-(x^2/2 + y^2/2)^(1/2)/5))/(x^2/2 + y^2/2)^(1/2) + # 2*pi^2*exp(cos(2*pi*x)/2 + cos(2*pi*y)/2)*cos(2*pi*x) - # (x^2*exp(-(x^2/2 + y^2/2)^(1/2)/5))/(5*(x^2/2 + y^2/2)) - # (x^2*exp(-(x^2/2 + y^2/2)^(1/2)/5))/(x^2/2 + y^2/2)^(3/2) - # pi^2*exp(cos(2*pi*x)/2 + cos(2*pi*y)/2)*sin(2*pi*x)^2 # # diff( f , y , 2 ) # (2*exp(-(x^2/2 + y^2/2)^(1/2)/5))/(x^2/2 + y^2/2)^(1/2) + # 2*pi^2*exp(cos(2*pi*x)/2 + cos(2*pi*y)/2)*cos(2*pi*y) - # (y^2*exp(-(x^2/2 + y^2/2)^(1/2)/5))/(5*(x^2/2 + y^2/2)) - # (y^2*exp(-(x^2/2 + y^2/2)^(1/2)/5))/(x^2/2 + y^2/2)^(3/2) - # pi^2*exp(cos(2*pi*x)/2 + cos(2*pi*y)/2)*sin(2*pi*y)^2 # # diff( f , x , y) # - (x*y*exp(-(x^2/2 + y^2/2)^(1/2)/5))/(5*(x^2/2 + y^2/2)) - # (x*y*exp(-(x^2/2 + y^2/2)^(1/2)/5))/(x^2/2 + y^2/2)^(3/2) - # pi^2*exp(cos(2*pi*x)/2 + cos(2*pi*y)/2)*sin(2*pi*x)*sin(2*pi*y) x = xx[1] y = xx[2] sqn2 = (x^2 + y^2) / 2 cosx = cos(2 * π * x) cosy = cos(2 * π * y) comp1 = exp(-(sqn2)^(1/2) / 5) comp2 = exp((cosx + cosy) / 2) v = -20 * comp1 - comp2 + 20 + ℯ sinx = sin(2 * π * x) siny = sin(2 * π * y) g = zeros(2) # \nabla f(x) g[1] = π * comp2 * sinx + 2 * x * comp1 / (sqn2)^(1/2) g[2] = π * comp2 * siny + 2 * y * comp1 / (sqn2)^(1/2) H = zeros(2, 2) H[1, 1] = (2*comp1)/(sqn2)^(1/2) + 2*π^2*comp2*cosx + - (x^2*comp1)/(5*sqn2) - (x^2*comp1)/(sqn2)^(3/2) + - π^2*comp2*sinx^2 H[2, 2] = (2*comp1)/(sqn2)^(1/2) + 2*π^2*comp2*cosy + - (y^2*comp1)/(5*sqn2) - (y^2*comp1)/(sqn2)^(3/2) + - π^2*comp2*siny^2 H[1, 2] = -(x*y*comp1)/(5*(sqn2)) + - (x*y*comp1)/(sqn2)^(3/2) + - π^2*comp2*sinx*siny H[2, 1] = H[1, 2] else error("first you need to find the ackley_Hes and ackley_Grd files :/") (H, g, v) = ackley_Hes(xx) g = g' (g, v) = ackley_Grd(xx) v = - 20 * exp( - ( ( xx[1]^2 + xx[2]^2 ) / 2 )^(1/2) / 5 ) + -exp( cos( 2 * π * xx[1] ) / 2 + cos( 2 * π * xx[2] ) / 2 ) + 20 + ℯ end return (v, g, H) end end # ackley # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - function lasso(x::Union{Nothing, AbstractVecOrMat}) # nondifferentiable lasso example: # # f( x , y ) = || 3 * x + 2 * y - 2 ||_2^2 + 10 ( | x | + | y | ) if isnothing(x) # informative call v = ( 2 - 1/3 )^2 + 10/9 # optimal solution [ 1/9 , 0 ] return (v, [0, 0]) else v = ( 3 * x( 1 ) + 2 * x( 2 ) - 2 )^2 + 10 * ( abs( x( 1 ) ) + abs( x( 2 ) ) ) # f(x) g = zeros(2) g[1] = 18 * x[1] + 12 * x[2] - 12 + 10 * sign( x[1] ) g[2] = 12 * x[1] + 8 * x[2] - 8 + 10 * sign( x[2] ) return (v, g) end end # lasso # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - include("./testNN_Jac.jl") include("./testNN_Hes.jl") include("testNN.jl") function myNN(x::Union{Nothing, AbstractVecOrMat}) # 1 x 5 x 5 x 5 x 1 = 76 w NN for solving a 1D fitting problem if isnothing(x) # informative call v = -Inf; # optimal value unknown (although 0 may perhaps be good) # Xavier initialization: uniform random in [ - A , A ] with # A = \sqrt{6} / \sqrt{n + m}, with n and m the input and output # layers. in our case n + m is either 6 or 10, so we take A = 1 # # note that starting point is random, so each run will be different # (unless an explicit starting point is provided); if stability is # neeed, the seed of the generator has to be set externally return (v, 2 * rand(76, 1) - 1) else v = testNN(x) # f(x) return (v, testNN_Jac(x)', testNN_Hes(x)') end end # myNN # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - function myNN2(x::Union{Nothing, AbstractVecOrMat}) # 1 x 5 x 5 x 5 x 1 = 76 w NN for solving a 1D fitting problem # plus ridge stabilization \lambda || x ||^2 / 2 lambda = 1e+2 if isnothing(x) # informative call v = -Inf # optimal value unknown (although 0 may perhaps be good) # Xavier initialization: uniform random in [ - A , A ] with # A = \sqrt{6} / \sqrt{n + m}, with n and m the input and output # layers. in our case n + m is either 6 or 10, so we take A = 1 # # note that starting point is random, so each run will be different # (unless an explicit starting point is provided); if stability is # neeed, the seed of the generator has to be set externally return (v, 2 * rand(76, 1) - 1) else v = testNN(x) + lambda * x' * x / 2 # f(x) return (v, testNN_Jac(x)' + lambda * x, testNN_Hes(x)' + lambda * I) end end # myNN2 # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -