138 lines
3.1 KiB
Julia
138 lines
3.1 KiB
Julia
module housQR
|
|
|
|
import Base: size, show, getproperty, getfield, propertynames, \, *
|
|
using LinearAlgebra: norm, I, triu, diagm, dot
|
|
|
|
export QRhous, qrfact
|
|
|
|
mutable struct QRhous{T <: Real}
|
|
A::AbstractVecOrMat{T}
|
|
d::AbstractArray{T}
|
|
AQ::Union{Nothing, AbstractVecOrMat{T}}
|
|
AR::Union{Nothing, AbstractVecOrMat{T}}
|
|
|
|
QRhous(A, d, AQ=nothing, AR=nothing) = new{eltype(A)}(A, d, AQ, AR)
|
|
end
|
|
|
|
|
|
|
|
function householder_vector(x::Vector{T})::Tuple{Vector{T}, T} where T
|
|
# returns the normalized vector u such that H*x is a multiple of e_1
|
|
s = norm(x)
|
|
if x[1] ≥ 0
|
|
s = -s
|
|
end
|
|
u = copy(x)
|
|
u[1] -= s
|
|
u ./= norm(u)
|
|
return u, s
|
|
end
|
|
|
|
function householder_vector(x::Matrix{T})::Tuple{Matrix{T}, T} where T
|
|
# returns the normalized vector u such that H*x is a multiple of e_1
|
|
s = norm(x)
|
|
if x[1] ≥ 0
|
|
s = -s
|
|
end
|
|
u = copy(x)
|
|
u[1] -= s
|
|
u ./= norm(u)
|
|
return u, s
|
|
end
|
|
|
|
function qrfact(A::Matrix{T})::QRhous where T
|
|
(m, n) = size(A)
|
|
R = deepcopy(A)
|
|
d = zeros(n)
|
|
|
|
for k ∈ 1:n
|
|
(u, s) = householder_vector(R[k:end, k])
|
|
# construct R
|
|
d[k] = s
|
|
R[k:end, k+1:end] -= 2 * u * (u' * R[k:end, k+1:end])
|
|
R[k:end, k] .= u
|
|
end
|
|
return QRhous(R, d)
|
|
end
|
|
|
|
|
|
function qyhous(A::QRhous{T}, y::AbstractArray{T}) where T
|
|
m, n = size(A)
|
|
z = deepcopy(y)
|
|
for j ∈ n:-1:1
|
|
# z[j:m] = z[j:m] - 2 * A.A[j:m, j] * (A.A[j:m, j]' * z[j:m])
|
|
z[j:m] -= 2 * A.A[j:m, j] .* dot(A.A[j:m, j], z[j:m])
|
|
end
|
|
return z
|
|
end
|
|
|
|
function qyhoust(A::QRhous{T}, y::AbstractArray{T}) where T
|
|
m, n = size(A.A)
|
|
z = deepcopy(y)
|
|
for j ∈ 1:n
|
|
# z[j:m] = z[j:m] - A.A[j:m, j] * (A.A[j:m, j]' * z[j:m])
|
|
z[j:m] -= 2 * A.A[j:m, j] .* dot(A.A[j:m, j], z[j:m])
|
|
end
|
|
return z
|
|
end
|
|
|
|
function calculateQ(A::QRhous{T}) where T
|
|
if A.AQ != nothing
|
|
return A.AQ
|
|
end
|
|
m, n = size(A.A)
|
|
|
|
A.AQ = zeros(m, 0)
|
|
id = Matrix{eltype(A.A)}(I, m, n)
|
|
for i ∈ eachcol(id)
|
|
A.AQ = [A.AQ qyhous(A, i)]
|
|
end
|
|
return A.AQ
|
|
end
|
|
|
|
function calculateR(A::QRhous{T}) where T
|
|
if A.AR != nothing
|
|
return A.AR
|
|
end
|
|
m, n = size(A.A)
|
|
A.AR = triu(A.A[1:n, :], 1) + diagm(A.d)
|
|
return A.AR
|
|
end
|
|
|
|
function Base.show(io::IO, mime::MIME{Symbol("text/plain")}, A::QRhous{T}) where T
|
|
summary(io, A); println(io)
|
|
print(io, "Q factor: ")
|
|
show(io, mime, A.Q)
|
|
print(io, "\nR factor: ")
|
|
show(io, mime, A.R)
|
|
end
|
|
|
|
function Base.getproperty(A::QRhous{T}, d::Symbol) where T
|
|
if d === :R
|
|
return calculateR(A)
|
|
elseif d === :Q
|
|
return calculateQ(A)
|
|
else
|
|
getfield(A, d)
|
|
end
|
|
end
|
|
|
|
Base.propertynames(A::QRhous, private::Bool=false) = (:R, :Q, (private ? fieldnames(typeof(A)) : ())...)
|
|
|
|
Base.size(A::QRhous) = size(getfield(A, :A))
|
|
|
|
function (\)(A::QRhous{T}, b::AbstractVector{T}) where T
|
|
n, m = size(A)
|
|
v = qyhoust(A, b)
|
|
x = zeros(m)
|
|
for j ∈ m:-1:1
|
|
x[j] = (v[j] - dot(x[j+1:m], A.A[j, j+1:m])) * A.d[j]^-1
|
|
end
|
|
return x
|
|
end
|
|
|
|
function (*)(A::QRhous{T}, x::AbstractVecOrMat{T}) where T
|
|
return qyhous(A, (A.R * x))
|
|
end
|
|
|
|
end |