Files
cmdla/11-22/NCG.jl

547 lines
18 KiB
Julia

using LinearAlgebra, Printf, Plots
function NCG(f;
x::Union{Nothing, Vector}=nothing,
wf::Integer=0,
rstart::Integer=0,
eps::Real=1e-6,
astart::Real=1,
MaxFeval::Integer=1000,
m1::Real=0.01,
m2::Real=0.9,
tau::Real=0.9,
sfgrd::Real=0.2,
MInf::Real=-Inf,
mina::Real=1e-16,
plt::Union{Plots.Plot, Nothing}=nothing,
plotatend::Bool=false,
Plotf::Integer=0,
printing::Bool=true)
#function [ x , status ] = NCG( f , x , wf , rstart , eps , astart ,
# MaxFeval , m1 , m2 , tau , sfgrd , MInf ,
# mina )
#
# Apply a Nonlinear Conjugated Gradient algorithm for the minimiztion of
# the provided function f, which must have the following interface:
#
# [ v , g ] = f( x )
#
# Input:
#
# - x is either a [ n x 1 ] real (column) vector denoting the input of
# f(), or [] (empty).
#
# Output:
#
# - v (real, scalar): if x == [] this is the best known lower bound on
# the unconstrained global optimum of f(); it can be -Inf if either f()
# is not bounded below, or no such information is available. If x ~= []
# then v = f(x).
#
# - g (real, [ n x 1 ] real vector): this also depends on x. if x == []
# this is the standard starting point from which the algorithm should
# start, otherwise it is the gradient of f() at x (or a subgradient if
# f() is not differentiable at x, which it should not be if you are
# applying the gradient method to it).
#
# The other [optional] input parameters are:
#
# - x (either [ n x 1 ] real vector or [], default []): starting point.
# If x == [], the default starting point provided by f() is used.
#
# - wf (integer scalar, optional, default value 0): which of the Nonlinear
# Conjugated Gradient formulae to use. Possible values are:
# = 0: Fletcher-Reeves
# = 1: Polak-Ribiere
# = 2: Hestenes-Stiefel
# = 3: Dai-Yuan
#
# - rstart (integer scalar, optional, default value 0): if > 0, restarts
# (setting beta = 0) are performed every n * rstart iterations
#
# - eps (real scalar, optional, default value 1e-6): the accuracy in the
# stopping criterion: the algorithm is stopped when the norm of the
# gradient is less than or equal to eps. If a negative value is provided,
# this is used in a *relative* stopping criterion: the algorithm is
# stopped when the norm of the gradient is less than or equal to
# (- eps) * || norm of the first gradient ||.
#
# - astart (real scalar, optional, default value 1): starting value of
# alpha in the line search (> 0)
#
# - MaxFeval (integer scalar, optional, default value 1000): the maximum
# number of function evaluations (hence, iterations will be not more than
# MaxFeval because at each iteration at least a function evaluation is
# performed, possibly more due to the line search).
#
# - m1 (real scalar, optional, default value 0.01): first parameter of the
# Armijo-Wolfe-type line search (sufficient decrease). Has to be in (0,1)
#
# - m2 (real scalar, optional, default value 0.9): typically the second
# parameter of the Armijo-Wolfe-type line search (strong curvature
# condition). It should to be in (0,1); if not, it is taken to mean that
# the simpler Backtracking line search should be used instead
#
# - tau (real scalar, optional, default value 0.9): scaling parameter for
# the line search. In the Armijo-Wolfe line search it is used in the
# first phase: if the derivative is not positive, then the step is
# divided by tau (which is < 1, hence it is increased). In the
# Backtracking line search, each time the step is multiplied by tau
# (hence it is decreased).
#
# - sfgrd (real scalar, optional, default value 0.2): safeguard parameter
# for the line search. to avoid numerical problems that can occur with
# the quadratic interpolation if the derivative at one endpoint is too
# large w.r.t. the one at the other (which leads to choosing a point
# extremely near to the other endpoint), a *safeguarded* version of
# interpolation is used whereby the new point is chosen in the interval
# [ as * ( 1 + sfgrd ) , am * ( 1 - sfgrd ) ], being [ as , am ] the
# current interval, whatever quadratic interpolation says. If you
# experiemce problems with the line search taking too many iterations to
# converge at "nasty" points, try to increase this
#
# - MInf (real scalar, optional, default value -Inf): if the algorithm
# determines a value for f() <= MInf this is taken as an indication that
# the problem is unbounded below and computation is stopped
# (a "finite -Inf").
#
# - mina (real scalar, optional, default value 1e-16): if the algorithm
# determines a stepsize value <= mina, this is taken as an indication
# that something has gone wrong (the gradient is not a direction of
# descent, so maybe the function is not differentiable) and computation
# is stopped. It is legal to take mina = 0, thereby in fact skipping this
# test.
#
# Output:
#
# - x ([ n x 1 ] real column vector): the best solution found so far.
#
# - status (string): a string describing the status of the algorithm at
# termination
#
# = 'optimal': the algorithm terminated having proven that x is a(n
# approximately) optimal solution, i.e., the norm of the gradient at x
# is less than the required threshold
#
# = 'unbounded': the algorithm has determined an extrenely large negative
# value for f() that is taken as an indication that the problem is
# unbounded below (a "finite -Inf", see MInf above)
#
# = 'stopped': the algorithm terminated having exhausted the maximum
# number of iterations: x is the bast solution found so far, but not
# necessarily the optimal one
#
# = 'error': the algorithm found a numerical error that prevents it from
# continuing optimization (see mina above)
#
#{
# =======================================
# Author: Antonio Frangioni
# Date: 10-11-22
# Version 1.21
# Copyright Antonio Frangioni
# =======================================
#}
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# inner functions - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
function f2phi(alpha, derivate=false)
# computes and returns the value of the tomography at alpha
#
# phi( alpha ) = f( x + alpha * d )
#
# if Plotf > 2 saves the data in gap() for plotting
#
# if the second output parameter is required, put there the derivative
# of the tomography in alpha
#
# phi'( alpha ) = < \nabla f( x + alpha * d ) , d >
#
# saves the point in lastx, the gradient in lastg and increases feval
lastx = x + alpha * d
phi, lastg, _ = f(lastx)
if Plotf > 2
if fStar > -Inf
push!(gap, (phi - fStar) / max(abs(fStar), 1))
else
push!(gap, phi)
end
end
feval += 1
if derivate
return (phi, dot(d, lastg))
end
return (phi, nothing)
end
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
function ArmijoWolfeLS(phi0, phip0, as, m1, m2, tau)
# performs an Armijo-Wolfe Line Search.
#
# phi0 = phi( 0 ), phip0 = phi'( 0 ) < 0
#
# as > 0 is the first value to be tested: if phi'( as ) < 0 then as is
# divided by tau < 1 (hence it is increased) until this does not happen
# any longer
#
# m1 and m2 are the standard Armijo-Wolfe parameters; note that the strong
# Wolfe condition is used
#
# returns the optimal step and the optimal f-value
lsiter = 1 # count iterations of first phase
local phips, phia
while feval MaxFeval
phia, phips = f2phi(as, true)
if (phia phi0 + m1 * as * phip0) && (abs(phips) -m2 * phip0)
if printing
@printf("\t%2d", lsiter)
end
a = as
return (a, phia) # Armijo + strong Wolfe satisfied, we are done
end
if phips 0 # derivative is positive, break
break
end
as = as / tau
lsiter += 1
end
if printing
@printf("\t%2d ", lsiter)
end
lsiter = 1 # count iterations of second phase
am = 0
a = as
phipm = phip0
while (feval MaxFeval ) && (as - am) > mina && (phips > 1e-12)
# compute the new value by safeguarded quadratic interpolation
a = (am * phips - as * phipm) / (phips - phipm)
a = max(am + ( as - am ) * sfgrd, min(as - ( as - am ) * sfgrd, a))
# compute phi(a)
phia, phip = f2phi(a, true)
if (phia phi0 + m1 * a * phip0) && (abs(phip) -m2 * phip0)
break # Armijo + strong Wolfe satisfied, we are done
end
# restrict the interval based on sign of the derivative in a
if phip < 0
am = a
phipm = phip
else
as = a
if as mina
break
end
phips = phip
end
lsiter += 1
end
if printing
@printf("%2d", lsiter)
end
return (a, phia)
end
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
function BacktrackingLS(phi0, phip0, as, m1, tau)
# performs a Backtracking Line Search.
#
# phi0 = phi( 0 ), phip0 = phi'( 0 ) < 0
#
# as > 0 is the first value to be tested, which is decreased by
# multiplying it by tau < 1 until the Armijo condition with parameter
# m1 is satisfied
#
# returns the optimal step and the optimal f-value
lsiter = 1 # count ls iterations
while feval MaxFeval && as > mina
phia, _ = f2phi(as)
if phia phi0 + m1 * as * phip0 # Armijo satisfied
break # we are done
end
as *= tau
lsiter += 1
end
if printing
@printf("\t%2d", lsiter)
end
return (as, phia)
end
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Plotf = 1;
# 1 = the level sets of f and the trajectory are plotted (when n = 2)
# 2 = the function value / gap are plotted, iteration-wise
# 3 = the function value / gap are plotted, function-evaluation-wise
# all the rest: nothing is plotted
Interactive = false # if we pause at every iteration
PXY = Matrix{Real}(undef, 2, 0)
local gap
if Plotf > 1
if Plotf == 2
MaxIter = 50 # expected number of iterations for the gap plot
else
MaxIter = 70 # expected number of iterations for the gap plot
end
gap = []
end
if Plotf == 2 && plt == nothing
plt = plot(xlims=(0, MaxIter), ylims=(1e-15, 1e+1))
end
if Plotf > 1 && plt == nothing
plt = plot(xlims=(0, MaxIter))
end
if plt == nothing
plt = plot()
end
# reading and checking input- - - - - - - - - - - - - - - - - - - - - - - -
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
local fStar
if isnothing(x)
fStar, x, _ = f(nothing)
else
fStar, _, _ = f(nothing)
end
n = size(x, 1)
if wf < 0 || wf > 3
error("unknown NCG formula %d", wf)
end
if astart 0
error("astart must be > 0")
end
if m1 0 || m1 1
error("m1 is not in (0 ,1)")
end
AWLS = ( m2 > 0 && m2 < 1 )
if tau 0 || tau 1
error("tau is not in (0 ,1)")
end
if sfgrd 0 || sfgrd 1
error("sfgrd is not in (0, 1)")
end
if mina < 0
error("mina is < 0")
end
# "global" variables- - - - - - - - - - - - - - - - - - - - - - - - - - - -
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
lastx = zeros(n, 1) # last point visited in the line search
lastg = zeros(n, 1) # gradient of lastx
pastg = zeros(n, 1)
pastd = zeros(n, 1)
d = zeros(n, 1) # NGC's direction
feval = 0 # f() evaluations count ("common" with LSs)
status = "error"
# initializations - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
if printing
@printf("NCG method ")
if wf == 0
@printf("(Fletcher-Reeves)\n")
elseif wf == 1
@printf("(Polak-Ribiere)\n")
elseif wf == 2
@printf("(Hestenes-Stiefel)\n")
elseif wf == 3
@printf("(Dai-Yuan)\n")
end
if fStar > -Inf
@printf("feval\trel gap")
else
@printf("feval\tf(x)")
end
@printf("\t\t|| g(x) ||\tbeta\tls feval\ta*\n\n")
end
v, _ = f2phi(0)
ng = norm(lastg)
if eps < 0
ng0 = -ng # norm of first subgradient: why is there a "-"? ;-)
else
ng0 = 1 # un-scaled stopping criterion
end
iter = 1 # iterations count (as distinguished from f() evals)
# main loop - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
while true
# output statistics - - - - - - - - - - - - - - - - - - - - - - - - - -
if fStar > - Inf
gapk = (v - fStar) / max(abs(fStar), 1)
if printing
@printf("%4d\t%1.4e\t%1.4e", feval, gapk, ng)
end
if Plotf == 2
push!(gap, gapk)
end
else
if printing
@printf("%4d\t%1.8e\t\t%1.4e", feval, v, ng)
end
if Plotf == 2
push!(gap, v)
end
end
# stopping criteria - - - - - - - - - - - - - - - - - - - - - - - - - -
if ng eps * ng0
status = "optimal"
break
end
if feval > MaxFeval
status = "stopped"
break
end
# compute search direction- - - - - - - - - - - - - - - - - - - - - - -
# formulae could be streamlined somewhat and some norms could be saved
# from previous iterations
if iter == 1 # first iteration is off-line, standard gradient
d = -lastg
if printing
@printf("\t")
end
else # normal iterations, use appropriate NCG formula
if rstart > 0 && mod(iter, n * rstart) == 0
# ... unless a restart is being prformed
beta = 0
if printing
@printf("\t(res)")
end
else
if wf == 0 # Fletcher-Reeves
beta = (ng / norm(pastg))^2
elseif wf == 1 # Polak-Ribiere
beta = (dot(lastg, (lastg - pastg))) / norm(pastg)^2
beta = max(beta, 0)
elseif wf == 2 # Hestenes-Stiefel
beta = (dot(lastg, (lastg - pastg))) / (dot((lastg - pastg), pastd))
if beta < 0
beta = 0
end
elseif wf == 3 # Dai-Yuan
beta = ng^2 / (dot((lastg - pastg), pastd) )
end
if printing
@printf("\t%1.4f", beta)
end
end
if beta 0
d = -lastg + beta * pastd
else
d = -lastg
end
end
pastg = lastg # previous gradient
pastd = d # previous search direction
# compute step size - - - - - - - - - - - - - - - - - - - - - - - - - -
phip0 = dot(lastg, d)
local a
if AWLS
a, v = ArmijoWolfeLS(v, phip0, astart, m1, m2, tau)
else
a, v = BacktrackingLS(v, phip0, astart, m1, tau)
end
# output statistics - - - - - - - - - - - - - - - - - - - - - - - - - -
if printing
@printf("\t%1.2e\n", a)
end
if a mina
status = "error"
break
end
if v MInf
status = "unbounded"
break
end
# compute new point - - - - - - - - - - - - - - - - - - - - - - - - - -
# possibly plot the trajectory
if n == 2 && Plotf == 1
PXY = hcat(PXY, hcat(x, lastx))
end
x = lastx
ng = norm(lastg)
# iterate - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
iter += 1
if Interactive
readline()
end
end
# end of main loop- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
if Plotf 2
plot!(plt, gap)
elseif Plotf == 1 && n == 2
plot!(plt, PXY[1, :], PXY[2, :])
end
if plotatend
display(plt)
end
return (x, status)
end # the end- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -