
SEMINAR: A Unified View of Modalities in Types Systems

SEMINAR:
A Unified View of Modalities in Types Systems

Elvis Rossi

Department of Computer Science

University of Pisa

Master Degree in Computer Science

February 17, 2025

SEMINAR: A Unified View of Modalities in Types Systems

Table of Contents

Table of Contents I

1 Modalities

2 Introduction

3 Applications

SEMINAR: A Unified View of Modalities in Types Systems

Modalities

Outline

1 Modalities

2 Introduction

3 Applications

SEMINAR: A Unified View of Modalities in Types Systems

Modalities

In Philosophy

A modality in philosophy and formally in formal logic/type theory
expresses a certain mode (or “moment” as in Hegel) of being.
According to Kant the four “categories” are:

Quantity

Quality

Relation

Modality

and the modalities contain the three pairs of opposites:

possibility — impossibility

being — nothing

necessity — Zufälligkeit

SEMINAR: A Unified View of Modalities in Types Systems

Modalities

In formal logic and type theory

In formal logic and type theory modalities are formalized by modal
operators or closure operators #, that send propositions/types X
to new propositions/types #X , satisfying some properties.

Adding such modalities to propositional logic or similar produces
what is called modal logic. Here the most famous modal operators
are those meant to formalize necessity (denoted □) and possibility
(denoted ♢), which together form S4 modal logic. Similarly, adding
modalities more generally to type theory and homotopy type theory
yields modal type theory and modal homotopy type theory

SEMINAR: A Unified View of Modalities in Types Systems

Introduction

Outline

1 Modalities

2 Introduction

3 Applications

SEMINAR: A Unified View of Modalities in Types Systems

Introduction

Ringoid of Modalities

The modality structure is a ring-like structure, which parameterises
the calculus Λp.
It is a 6-tuple consisting of a set M, addition (+), multiplication
(·), meet (∧), element 0 and element 1.

SEMINAR: A Unified View of Modalities in Types Systems

Introduction

(M, +, 0) forms a commutative monoid (associative and
commutative), with 0 as identity

(M, ·, 1) forms a monoid (associative), with 1 as identity

0 is an absorbing element for multiplication: p · 0 = 0 · p = 0

(M, ∧) forms a semilattice: meet is associative, commutative
and idempotent.

multiplication distributes over addition: p(q + r) = pq + pr
and (p + q)r = pr + qr

multiplication distributes over meet: p(q ∧ r) = pq ∧ pr and
(p ∧ q)r = pr ∧ qr

addition distributes over meet: (p ∧ q) + r = (p + r) ∧ (q + r)

SEMINAR: A Unified View of Modalities in Types Systems

Introduction

(M, +, 0) forms a commutative monoid (associative and
commutative), with 0 as identity

(M, ·, 1) forms a monoid (associative), with 1 as identity

0 is an absorbing element for multiplication: p · 0 = 0 · p = 0

(M, ∧) forms a semilattice: meet is associative, commutative
and idempotent.

multiplication distributes over addition: p(q + r) = pq + pr
and (p + q)r = pr + qr

multiplication distributes over meet: p(q ∧ r) = pq ∧ pr and
(p ∧ q)r = pr ∧ qr

addition distributes over meet: (p ∧ q) + r = (p + r) ∧ (q + r)

SEMINAR: A Unified View of Modalities in Types Systems

Introduction

(M, +, 0) forms a commutative monoid (associative and
commutative), with 0 as identity

(M, ·, 1) forms a monoid (associative), with 1 as identity

0 is an absorbing element for multiplication: p · 0 = 0 · p = 0

(M, ∧) forms a semilattice: meet is associative, commutative
and idempotent.

multiplication distributes over addition: p(q + r) = pq + pr
and (p + q)r = pr + qr

multiplication distributes over meet: p(q ∧ r) = pq ∧ pr and
(p ∧ q)r = pr ∧ qr

addition distributes over meet: (p ∧ q) + r = (p + r) ∧ (q + r)

SEMINAR: A Unified View of Modalities in Types Systems

Introduction

(M, +, 0) forms a commutative monoid (associative and
commutative), with 0 as identity

(M, ·, 1) forms a monoid (associative), with 1 as identity

0 is an absorbing element for multiplication: p · 0 = 0 · p = 0

(M, ∧) forms a semilattice: meet is associative, commutative
and idempotent.

multiplication distributes over addition: p(q + r) = pq + pr
and (p + q)r = pr + qr

multiplication distributes over meet: p(q ∧ r) = pq ∧ pr and
(p ∧ q)r = pr ∧ qr

addition distributes over meet: (p ∧ q) + r = (p + r) ∧ (q + r)

SEMINAR: A Unified View of Modalities in Types Systems

Introduction

(M, +, 0) forms a commutative monoid (associative and
commutative), with 0 as identity

(M, ·, 1) forms a monoid (associative), with 1 as identity

0 is an absorbing element for multiplication: p · 0 = 0 · p = 0

(M, ∧) forms a semilattice: meet is associative, commutative
and idempotent.

multiplication distributes over addition: p(q + r) = pq + pr
and (p + q)r = pr + qr

multiplication distributes over meet: p(q ∧ r) = pq ∧ pr and
(p ∧ q)r = pr ∧ qr

addition distributes over meet: (p ∧ q) + r = (p + r) ∧ (q + r)

SEMINAR: A Unified View of Modalities in Types Systems

Introduction

Definition (Order)

(p ≤ q) ≜ (p = p ∧ q)

SEMINAR: A Unified View of Modalities in Types Systems

Introduction

Definition (Modality context)

A modality context (or usage map) is defined as a map from
variable names to modality expressions.

Every variable in the judgement γΓ ⊢ t : A is qualified by a
modality.

t has type A with unit qualification, in context γΓ

notation: γΓ, x : pA ≜ (γ, x 7→ p)(Γ, x : A)

SEMINAR: A Unified View of Modalities in Types Systems

Introduction

Some properties:

(γ + δ)(x) = γ(x) + δ(x),

(γ ∧ δ)(x) = γ(x) ∧ δ(x),

(q · γ)(x) = q · γ(x)

SEMINAR: A Unified View of Modalities in Types Systems

Introduction

Predicative Polymorphic Lambda Calculus with Modalities

Λp is a functional programming language with:

predicative polymorphism ∀α.B,
modal function types pA → B,

modal boxing p⟨A⟩,
and modality polymorphism ∀m.B.

SEMINAR: A Unified View of Modalities in Types Systems

Introduction

Types

Definition

Types A,B,C ∈ Ty are given by the following grammar:

A,B,C ::= K | 1 | α
| ∀α.A | ∀m.A
| pA → B | A+ B
| A× B | p⟨A⟩

Let Ty0 denote the set of monomorphic types (monotypes).
If α is restricted to only monotypes, Λp becomes predicative.
Let Ty00 denote the set of closed monotypes.

SEMINAR: A Unified View of Modalities in Types Systems

Introduction

If γΓ ⊢ A then pγΓ is needed to produce p⟨A⟩.
If γΓ ⊢ A and δΓ ⊢ B, then (γ + δ)Γ is needed to produce
both A and B.

SEMINAR: A Unified View of Modalities in Types Systems

Introduction

pA → B

1A → B = A → B = A ⊸ B

pA → B = p⟨A⟩ → B

SEMINAR: A Unified View of Modalities in Types Systems

Introduction

pA → B

1A → B = A → B = A ⊸ B

pA → B = p⟨A⟩ → B

SEMINAR: A Unified View of Modalities in Types Systems

Introduction

pA → B

1A → B = A → B = A ⊸ B

pA → B = p⟨A⟩ → B

SEMINAR: A Unified View of Modalities in Types Systems

Introduction

In a language with generalised algebraic data types, p⟨A⟩ would be
defined instead as a data type with constructor of type

pA → p⟨A⟩

SEMINAR: A Unified View of Modalities in Types Systems

Introduction

Typing rules for Λp

System F
(from lambda calculus)

VAR
Γ, x : A ⊢ x : A

ABS
Γ, x : A ⊢ t : B

Γ ⊢ λx .t : A → B

APP Γ ⊢ t : A → B Γ ⊢ u : A
Γ ⊢ t u : B

Λp

VAR
0Γ, x : 1A ⊢ x : A

ABS
γΓ, x : qA ⊢ t : B

γΓ ⊢ λ qx .t : qA → B

APP
γΓ ⊢ t : qA → B δΓ ⊢ u : A

(γ + qδ)Γ ⊢ t qu : B

SEMINAR: A Unified View of Modalities in Types Systems

Introduction

System F

T-ABS
(Γ, α) ⊢ t : B

Γ ⊢ Λα.t : ∀α.B

T-APP
Γ ⊢ t : ∀α.B Γ ⊢ A
Γ ⊢ t · A : B[A/α]

Λp

T-ABS
γ(Γ, α) ⊢ t : B

γΓ ⊢ Λα.t : ∀α.B

T-APP
γΓ ⊢ t : ∀α.B Γ ⊢ A

γΓ ⊢ t · A : B[A/α]

SEMINAR: A Unified View of Modalities in Types Systems

Introduction

Λp

p⟨·⟩-INTRO
γΓ ⊢ t :A

pγΓ ⊢ [pt] :p⟨A⟩

p⟨·⟩-ELIM
γΓ ⊢ u :p⟨A⟩ δΓ, x : qpA ⊢ t :C

(qγ + δ)Γ ⊢ let[px] = qu in t :C

SEMINAR: A Unified View of Modalities in Types Systems

Introduction

WK
δΓ ⊢ t :A γ ≤ δ

γΓ ⊢ t :A

Theorem (Convertibility)

If p ≤ q, then there is a term of type pA → q⟨A⟩ for any A.

SEMINAR: A Unified View of Modalities in Types Systems

Applications

Outline

1 Modalities

2 Introduction

3 Applications

SEMINAR: A Unified View of Modalities in Types Systems

Applications

Consider the three basic structural properties satisfied by
simply-typed lambda calculus:

Definition (Exchange)

Exchange indicates that the order in which we write down variables
in the context is irrelevant:

If Γ1, x1 : T1, x2 : T2, Γ2 ⊢ t : T

then Γ1, x2 : T2, x1 : T1, Γ2 ⊢ t : T

SEMINAR: A Unified View of Modalities in Types Systems

Applications

Definition (Weakening)

Weakening indicates that adding extra unneeded assumptions to
the context does not prevent a term from type checking:

If Γ1, Γ2 ⊢ t : T

then Γ1, x1 : T1, Γ2 ⊢ t : T

SEMINAR: A Unified View of Modalities in Types Systems

Applications

Definition (Contraction)

Contraction states that if we can type check a term using two
identical assumptions (x2 : T1 and x3 : T1) then we can check the
same term using a single assumption:

If Γ1, x2 : T1, x3 : T1, Γ2 ⊢ t : T2

then Γ1, x1 : T1, Γ2 ⊢ [x2 7→ x1][x3 7→ x1]t : T2

SEMINAR: A Unified View of Modalities in Types Systems

Applications

We thus have different types systems if we allow different rules to
be applied:

Linear type systems ensure that every variable is used exactly
once (E).

Affine type systems ensure that every variable is used at most
once (E, W).

Relevant type systems ensure that every variable is used at
least once (E, C).

Ordered type systems ensure that every variable is used
exactly once and in the order which it is introduced (none).

SEMINAR: A Unified View of Modalities in Types Systems

Applications

linear (E)

affine (E, W) relevant (E, C)

ordered (none)

unrestricted (E, W, C)

ω

0 1

ω

0 1+

ω

@

0

= 1

ω

@ 1+

10

combined

SEMINAR: A Unified View of Modalities in Types Systems

Applications

linear (E)

affine (E, W) relevant (E, C)

ordered (none)

unrestricted (E, W, C)

ω

0 1

ω

0 1+

ω

@

0

= 1

ω

@ 1+

10

combined

SEMINAR: A Unified View of Modalities in Types Systems

Applications

linear (E)

affine (E, W) relevant (E, C)

ordered (none)

unrestricted (E, W, C)

ω

0 1

ω

0 1+

ω

@

0

= 1

ω

@ 1+

10

combined

SEMINAR: A Unified View of Modalities in Types Systems

Applications

Linear Types

Indeed the unit modality precisely corresponds to linear usages.
A 0-qualified function is necessarily constant (irrelevance).
ω represents non-linear usage, equivalent to the more traditional
exclamation mark (!).

ω

0 1

SEMINAR: A Unified View of Modalities in Types Systems

Applications

Linear Type System

A ::= p | p⊥

| A⊗ A | A⊕ A
| A&A | A` A
| 1 | 0 | ⊤ | ⊥
| !A | ?A

SEMINAR: A Unified View of Modalities in Types Systems

Applications

The intuitionistic implication B =⇒ C can be defined as !B ⊸ C
Where

B ⊸ A ≜ B⊥ ` C

SEMINAR: A Unified View of Modalities in Types Systems

Applications

Finally the rules for · and +:

(+) 0 ω @ 1 1+

0 0 ω @ 1 1+

ω ω ω ω 1+ 1+

@ @ ω ω 1+ 1+

1 1 1+ 1+ 1+ 1+

1+ 1+ 1+ 1+ 1+ 1+

(·) 0 ω @ 1 1+

0 0 0 0 0 0

ω 0 ω ω ω ω

@ 0 ω @ @ ω

1 0 ω @ 1 1+

1+ 0 ω ω 1+ 1+

SEMINAR: A Unified View of Modalities in Types Systems

Applications

Quantitative Typing

A generalisation of all the above systems in what can be called
quantitative typing, with one modality for each set of accepted
usage.
Where the set of all modalities Mod = 2N, with 0 = {0}, 1 = {1}
and:

p + q = {x + y |x ∈ p, y ∈ q}
p · q = {x · y |x ∈ p, y ∈ q}
p ∧ q = p ∪ q

Every acceptable set of usage is tracked.

SEMINAR: A Unified View of Modalities in Types Systems

Applications

Sensitivity Analysis for Differential Privacy

In differential privacy one is interested in publishing statistically
anonymised data without revealing individual secrets.
The role of the type system is to ensure that if a certain amount of
noise is introduced in the inputs of a program, then at least the
same amount is present in the outputs.

SEMINAR: A Unified View of Modalities in Types Systems

Applications

In the literature every type A is equipped with a metric
dA : A× A → R∞

≥0.
f : A → B is c-sensitive if it does not increase distances by a factor
greater than c :

dB(f (x), f (y)) ≤R c · dA(x , y)

SEMINAR: A Unified View of Modalities in Types Systems

Applications

To translate the model into the proposed framework, let the
modality carrier set be R∞

≥0; let ∧ be the max operator.

Note: the order on the lattice is opposite to the order on R:
(≤) = (≥R).

SEMINAR: A Unified View of Modalities in Types Systems

Applications

In the literature there is a need to prove that evaluation preserve
sensitivity, in this framework no special preservation proof is
needed: any system is type-preserving for any modality ringoid,
thus any assignment of types to metrics will do.

SEMINAR: A Unified View of Modalities in Types Systems

Applications

Information-Flow Security

One application of type systems is to ensure that certain parts of a
program do not have access to private (high security) information.

The principal property of such systems is that the output of a
program does not depend on secret inputs.

This property holds for Λp, if we consider that any modality p
above 1 in the lattice is secret.

SEMINAR: A Unified View of Modalities in Types Systems

Applications

Note: The addition is relegated to play the same role as the meet:
(+) = (∧).
If we need a variable in two parts of a term, we mus assume the
worst and require the most public level given by the meet.

Note: The multiplication acts as the join (∨) of the lattice (dual to
the meet).

⊢ t : pA → B x : qX ⊢ u : A
x : p∨qX ⊢ t pu : B

	Table of Contents
	Modalities
	Introduction
	Applications

