module type C = sig type elt type internal type internal_node = { internal_in: internal list; internal_out: internal list; internal_between: (internal list * internal list) list; } type cfgt = elt Cfg.cfginternal type t = { t: cfgt; internal_var: internal_node Cfg.NodeMap.t; } val from_cfg : cfgt -> t val to_cfg : t -> cfgt val fixed_point : ?init : (elt list -> internal_node) -> ?update : (t -> Cfg.Node.t -> internal_node) -> t -> t val pp : out_channel -> t -> unit end module Make (M: Cfg.PrintableType) (I: Cfg.PrintableType) = struct type elt = M.t type internal = I.t type internal_node = { internal_in: internal list; internal_out: internal list; internal_between: (internal list * internal list) list; } let compare_internal_node (a:internal_node) (b:internal_node) : bool = match Utility.equality a.internal_in b.internal_in, Utility.equality a.internal_out b.internal_out, (List.fold_left2 (fun acc (ain, aout) (bin, bout) -> acc && (Utility.equality ain bin) && (Utility.equality aout bout) ) true a.internal_between b.internal_between) with | true, true, true -> true | _, _, _ -> false type cfgt = elt Cfg.cfginternal type t = { t: cfgt; internal_var: internal_node Cfg.NodeMap.t; } let compare_internal a b = Cfg.NodeMap.fold (fun node bi acc -> match Cfg.NodeMap.find_opt node a with None -> false | Some ai -> acc && compare_internal_node ai bi ) b true let from_cfg (cfg: cfgt) : t = {t = cfg; internal_var = Cfg.NodeMap.empty} let to_cfg ({t; _}: t) : cfgt = t open Cfg let pp (ppf: out_channel) (c: t) : unit = ( Printf.fprintf ppf "Cfg:\n"; Printf.fprintf ppf "Nodes' ids: "; List.iter (fun (x : Node.t) -> Printf.fprintf ppf "%d " x.id) (NodeSet.to_list c.t.nodes); Printf.fprintf ppf "\n"; Printf.fprintf ppf "Nodes' edges:\n"; List.iter (fun ((n, (a, b)) : (Node.t * (Node.t * Node.t option))) : unit -> match b with None -> Printf.fprintf ppf "\t%d -> %d\n" n.id a.id | Some b -> Printf.fprintf ppf "\t%d -> %d, %d\n" n.id a.id b.id ) (NodeMap.to_list c.t.edges); Printf.fprintf ppf "\n"; Printf.fprintf ppf "Nodes' back edges:\n"; List.iter (fun ((n, xs) : (Node.t * (Node.t list))) : unit -> Printf.fprintf ppf "\t%d -> " n.id; List.iter (fun (x: Node.t) -> Printf.fprintf ppf "%d, " x.id) xs; Printf.fprintf ppf "\n" ) (NodeMap.to_list c.t.reverse_edges); Printf.fprintf ppf "\n"; Printf.fprintf ppf "Input Value: "; (match c.t.input_val with Some i -> Printf.fprintf ppf "%d" i; | None -> Printf.fprintf ppf "None";); Printf.fprintf ppf "\n"; Printf.fprintf ppf "Input and Output Vars: "; (match c.t.input_output_var with Some (i, o) -> Printf.fprintf ppf "(in: %s, out: %s)" i o; | None -> Printf.fprintf ppf "None";); Printf.fprintf ppf "\n"; Printf.fprintf ppf "Initial node's id: "; (match c.t.initial with Some i -> Printf.fprintf ppf "%d" (i.id); | None -> Printf.fprintf ppf "None";); Printf.fprintf ppf "\n"; Printf.fprintf ppf "Terminal node's id: "; (match c.t.terminal with Some i -> Printf.fprintf ppf "%d" (i.id); | None -> Printf.fprintf ppf "None";); Printf.fprintf ppf "\n"; Printf.fprintf ppf "Code:\n"; List.iter (fun ((n, stms) : Node.t * elt list) : unit -> Printf.fprintf ppf "\tid %d --> %a\n%!" n.id M.pp_list stms ) (NodeMap.to_list c.t.content); Printf.fprintf ppf "\n"; Printf.fprintf ppf "Analysis structure:\n"; List.iter (fun ((n, {internal_in; internal_out; internal_between}) : (Node.t * internal_node)) : unit -> Printf.fprintf ppf "Node: %d\n" n.id; Printf.fprintf ppf "Internal Input: "; Printf.fprintf ppf "%a\n" I.pp_list internal_in; Printf.fprintf ppf "Internal Output: "; Printf.fprintf ppf "%a\n" I.pp_list internal_out; Printf.fprintf ppf "Internal Between: "; List.iter (fun (i, o) -> Printf.fprintf ppf "IN: %a;" I.pp_list i; Printf.fprintf ppf "OUT: %a;" I.pp_list o;) internal_between; Printf.fprintf ppf "\n"; ) (NodeMap.to_list c.internal_var); Printf.fprintf ppf "\n"; ) let fixed_point ?(init : (elt list -> internal_node) = (fun _ -> {internal_in = []; internal_out = []; internal_between = []})) ?(update : (t -> Cfg.Node.t -> internal_node) = (fun t n -> Cfg.NodeMap.find n t.internal_var)) (t: t) : t = (* init function is applied only once to each node content, the update function takes the node and the whole structure and is expected to return the updated structure for the appropriate node, update function is applied to the resulting structure until no change is observed with compareinternal function *) let rec aux t = let newt = {t with internal_var = Cfg.NodeMap.mapi (fun n _ -> update t n) t.internal_var} in if compare_internal newt.internal_var t.internal_var then newt else aux newt in let content = List.fold_left (fun cfg node -> Cfg.NodeMap.add node {internal_in = []; internal_out = []; internal_between = []} cfg) Cfg.NodeMap.empty (Cfg.NodeSet.to_list t.t.nodes) in let code = (* we add back in the nodes with no code (there is no binding in the t.t.content map) *) Cfg.NodeMap.union (fun _n c _empty -> Some c) t.t.content (Cfg.NodeMap.of_list (Cfg.NodeSet.to_list t.t.nodes |> List.map (fun c -> (c, [])))) in let content = Cfg.NodeMap.union (fun _key _empty code -> Some code) content (Cfg.NodeMap.map init code) in aux { t with internal_var = content } end