Files
lci/lib/miniFun/TypeChecker.ml

422 lines
15 KiB
OCaml

module Utility = Utility
open Types;;
Random.self_init ()
let (let*) = Result.bind
(* -------------------------------------------------------------------------- *)
(* polimporphic type checking *)
(* -------------------------------------------------------------------------- *)
let global_type_id = ref 0
let new_global_id () =
let id = !global_type_id in
incr global_type_id;
id
let rec unify type_a type_b =
if type_a == type_b then Ok () else
match (type_a, type_b) with
| IntegerTypeP, IntegerTypeP
| BooleanTypeP, BooleanTypeP ->
Ok ()
| TupleTypeP (a1, a2), TupleTypeP (b1, b2)
| ApplicationP (a1, a2), ApplicationP (b1, b2)
| FunctionTypeP (a1, a2), FunctionTypeP (b1, b2) ->
let* _ = unify a1 b1 in
unify a2 b2
| VariableTypeP ({contents = Link a1}),
VariableTypeP ({contents = Link b1}) ->
unify a1 b1
| VariableTypeP ({contents = Link ty_link}), ty_rest
| ty_rest, VariableTypeP ({contents = Link ty_link})
when ty_link = ty_rest ->
Ok ()
| VariableTypeP ({contents = Unbound (a1, _)}),
VariableTypeP ({contents = Unbound (b1, _)})
when a1 = b1 ->
Error (`WrongType "Only a single instance of a type should be available.")
| type_ab, VariableTypeP ({contents = Unbound (_id, _level)} as tvar)
| VariableTypeP ({contents = Unbound (_id, _level)} as tvar), type_ab ->
tvar := Link type_ab;
Ok ()
| _, _ ->
Error (`WrongType "Cannot unify types.")
let rec unifyable type_a type_b =
if type_a == type_b then Ok () else
match (type_a, type_b) with
| IntegerTypeP, IntegerTypeP
| BooleanTypeP, BooleanTypeP ->
Ok ()
| TupleTypeP (a1, a2), TupleTypeP (b1, b2)
| ApplicationP (a1, a2), ApplicationP (b1, b2)
| FunctionTypeP (a1, a2), FunctionTypeP (b1, b2) ->
let* _ = unifyable a1 b1 in
unifyable a2 b2
| VariableTypeP ({contents = Link a1}),
VariableTypeP ({contents = Link b1}) ->
unifyable a1 b1
| VariableTypeP ({contents = Link ty_link}), ty_rest
| ty_rest, VariableTypeP ({contents = Link ty_link})
when ty_link = ty_rest ->
Ok ()
| VariableTypeP ({contents = Unbound (a1, _)}),
VariableTypeP ({contents = Unbound (b1, _)})
when a1 = b1 ->
Error (`WrongType "Only a single instance of a type should be available.")
| _type_ab, VariableTypeP ({contents = Unbound (_id, _level)})
| VariableTypeP ({contents = Unbound (_id, _level)}), _type_ab ->
Ok ()
| _, _ ->
Error (`WrongType "Cannot unify types.")
let rec generalize level ty =
match ty with
| VariableTypeP {contents = Unbound (id, o_level)} when o_level > level ->
VariableTypeP (ref (Generic id))
| ApplicationP (ty, ty_arg) ->
ApplicationP (generalize level ty, generalize level ty_arg)
| FunctionTypeP (ty_arg, ty) ->
FunctionTypeP (generalize level ty_arg, generalize level ty)
| TupleTypeP (ty1, ty2) ->
TupleTypeP (generalize level ty1, generalize level ty2)
| VariableTypeP {contents = Link ty} ->
generalize level ty
| VariableTypeP {contents = Generic _}
| VariableTypeP {contents = Unbound _}
| IntegerTypeP
| BooleanTypeP ->
ty
let instantiate level ty =
let var_map = ref IntegerMap.empty in
let rec aux ty =
match ty with
| IntegerTypeP
| BooleanTypeP ->
ty
| TupleTypeP (ty1, ty2) ->
TupleTypeP (aux ty1, aux ty2)
| VariableTypeP {contents = Link ty} ->
aux ty
| VariableTypeP {contents = Generic id} -> (
match IntegerMap.find_opt id !var_map with
| Some ty -> ty
| None ->
let var = VariableTypeP (ref (Unbound (new_global_id (), level))) in
var_map := IntegerMap.add id var !var_map;
var
)
| VariableTypeP {contents = Unbound _} ->
ty
| ApplicationP (ty, ty_arg) ->
ApplicationP (aux ty, aux ty_arg)
| FunctionTypeP (ty_arg, ty) ->
FunctionTypeP (aux ty_arg, aux ty)
in
aux ty
let rec evaluate_type_polimorphic program (env: env) level =
match program with
| Integer _ -> Ok (IntegerTypeP)
| Boolean _ -> Ok (BooleanTypeP)
| Tuple (a, b) ->
let* type_a = evaluate_type_polimorphic a env level in
let* type_b = evaluate_type_polimorphic b env level in
Ok (TupleTypeP (type_a, type_b))
| Variable (x) -> (
match VariableMap.find_opt x env with
| Some (ty) ->
Ok (instantiate level ty)
| None ->
Error (`AbsentAssignment ("Variable " ^ x ^ " is not assigned."))
)
| Function (x, _typef, fbody) ->
let param_type = VariableTypeP (ref (Unbound (new_global_id (), level))) in
let fn_env = VariableMap.add x param_type env in
let* body_type = evaluate_type_polimorphic fbody fn_env level in
Ok (FunctionTypeP (param_type, body_type))
| Application (f, xs) ->
let* type_f = evaluate_type_polimorphic f env level in
let rec aux =
function
| FunctionTypeP (type_f_arg, type_f) ->
Ok (type_f_arg, type_f)
| VariableTypeP {contents = Link ty} ->
aux ty
| VariableTypeP ({contents = Unbound(_id, level)} as tvar) ->
let param_ty = VariableTypeP (ref (Unbound (new_global_id (), level)))
in
let f_ty = VariableTypeP (ref (Unbound (new_global_id (), level))) in
tvar := Link ( FunctionTypeP (param_ty, f_ty) );
Ok (param_ty, f_ty)
| _ -> Error (`WrongType "Expecting a function to apply.")
in
let* param_ty, f_ty = aux type_f in
let* type_xs = evaluate_type_polimorphic xs env level in
let* _ = unify param_ty type_xs in
Ok f_ty
| Plus (a, b)
| Minus (a, b)
| Times (a, b)
| Division (a, b)
| Modulo (a, b)
| Power (a, b) ->
let* type_a = evaluate_type_polimorphic a env level in
let* type_b = evaluate_type_polimorphic b env level in
let* _ = unify type_a IntegerTypeP in
let* _ = unify type_b IntegerTypeP in
Ok (IntegerTypeP)
| First a -> (
let* type_a = evaluate_type_polimorphic a env level in
let* _ = unify type_a
(TupleTypeP(VariableTypeP (ref (Unbound (new_global_id (), level))),
VariableTypeP (ref (Unbound (new_global_id (), level)))))
in
match type_a with
| TupleTypeP (ty_a, _)
| VariableTypeP {contents = Link TupleTypeP (ty_a, _)} -> Ok ty_a
| _ -> Error (`WrongType "Applying First to non tuple type.")
)
| Second a -> (
let* type_a = evaluate_type_polimorphic a env level in
let* _ = unify type_a
(TupleTypeP(VariableTypeP (ref (Unbound (new_global_id (), level))),
VariableTypeP (ref (Unbound (new_global_id (), level)))))
in
match type_a with
| TupleTypeP (_, ty_a)
| VariableTypeP {contents = Link TupleTypeP (_, ty_a)} -> Ok ty_a
| _ -> Error (`WrongType "Applying Second to non tuple type.")
)
| PowerMod (x, y, z) ->
let* type_x = evaluate_type_polimorphic x env level in
let* type_y = evaluate_type_polimorphic y env level in
let* type_z = evaluate_type_polimorphic z env level in
let* _ = unify type_x IntegerTypeP in
let* _ = unify type_y IntegerTypeP in
let* _ = unify type_z IntegerTypeP in
Ok (IntegerTypeP)
| Rand (x) ->
let* type_x = evaluate_type_polimorphic x env level in
let* _ = unify type_x IntegerTypeP in
Ok (IntegerTypeP)
| BAnd (a, b)
| BOr (a, b) ->
let* type_a = evaluate_type_polimorphic a env level in
let* type_b = evaluate_type_polimorphic b env level in
let* _ = unify type_a BooleanTypeP in
let* _ = unify type_b BooleanTypeP in
Ok (BooleanTypeP)
| BNot (x) ->
let* type_x = evaluate_type_polimorphic x env level in
let* _ = unify type_x BooleanTypeP in
Ok (BooleanTypeP)
| Cmp (a, b)
| CmpLess (a, b)
| CmpLessEq (a, b)
| CmpGreater (a, b)
| CmpGreaterEq (a, b) ->
let* type_a = evaluate_type_polimorphic a env level in
let* type_b = evaluate_type_polimorphic b env level in
let* _ = unify type_a IntegerTypeP in
let* _ = unify type_b IntegerTypeP in
Ok (BooleanTypeP)
| IfThenElse (guard, if_exp, else_exp) ->
let* type_guard = evaluate_type_polimorphic guard env level in
let* type_if_exp = evaluate_type_polimorphic if_exp env level in
let* type_else_exp = evaluate_type_polimorphic else_exp env level in
let* _ = unify type_guard BooleanTypeP in
let* _ = unify type_if_exp type_else_exp in
Ok (type_if_exp)
| LetIn (x, xval, rest) ->
let* var_ty = evaluate_type_polimorphic xval env (level + 1) in
let generalized_ty = generalize level var_ty in
evaluate_type_polimorphic rest (VariableMap.add x generalized_ty env) level
| LetFun (_f, _xs, _typef, _fbody, _rest) -> failwith "Not Implemented"
(* -------------------------------------------------------------------------- *)
let rec evaluate_type (program: t_exp) (context: ftype VariableMap.t) :
(ftype, [> typechecking_error]) result =
match program with
Integer _ -> Ok IntegerType
| Boolean _ -> Ok BooleanType
| Variable x -> ( (* check for the type in the context *)
match VariableMap.find_opt x context with
None -> Error (`AbsentAssignment
("The variable " ^ x ^ " is not defined."))
| Some t -> Ok t
)
| Tuple (x, y) -> (
let* xtype = evaluate_type x context in
let* ytype = evaluate_type y context in
Ok (TupleType (xtype, ytype))
)
| Function (x, typef, fbody) -> (
(* first check that the function has the right specified type then check
the type of the body using the bindings for the input *)
match typef with
FunctionType (tin, tout) -> (
let* typefbody = evaluate_type fbody (VariableMap.add x tin context)
in
if (typefbody = tout) then
Ok typef
else
Error (`WrongTypeSpecification
("Function does not return specified type."))
)
| _ -> Error (`WrongTypeSpecification
("Specification of function is not a function type."))
)
| Application (f, x) -> (
let* evalf = evaluate_type f context in
let* evalx = evaluate_type x context in
match evalf with
FunctionType (tin, tout) -> (
if tin = evalx then
Ok tout
else
Error (`WrongType "Appling function with wrong input type to value")
)
| _ -> Error (`WrongType "Applying to a non function type")
)
| Plus (x, y)
| Minus (x, y)
| Times (x, y)
| Division (x, y)
| Modulo (x, y)
| Power (x, y) -> (
let* typex = evaluate_type x context in
let* typey = evaluate_type y context in
match typex, typey with
| (IntegerType, IntegerType) -> Ok IntegerType
| (IntegerType, _) -> Error (`WrongType "Second term is not an integer.")
| (_, _) -> Error (`WrongType "First term is not an integer.")
)
| PowerMod (x, y, z) -> (
let* typex = evaluate_type x context in
let* typey = evaluate_type y context in
let* typez = evaluate_type z context in
match typex, typey, typez with
| (IntegerType, IntegerType, IntegerType) -> Ok IntegerType
| (IntegerType, IntegerType, _) -> Error (`WrongType ("Third term is " ^
"not an integer."))
| (IntegerType, _, _) -> Error (`WrongType
("Second term is not an integer."))
| (_, _, _) -> Error (`WrongType "First term is not an integer.")
)
| Rand (x) -> (
let* typex = evaluate_type x context in
match typex with
| (IntegerType) -> Ok IntegerType
| (_) -> Error (`WrongType "Term is not an integer.")
)
| BAnd (x, y)
| BOr (x, y) -> (
let* typex = evaluate_type x context in
let* typey = evaluate_type y context in
match typex, typey with
| (BooleanType, BooleanType) -> Ok BooleanType
| (BooleanType, _) -> Error (`WrongType "Second term is not a boolean.")
| (_, _) -> Error (`WrongType "First term is not a boolean.")
)
| BNot (x) -> (
let* typex = evaluate_type x context in
match typex with
| (BooleanType) -> Ok BooleanType
| (_) -> Error (`WrongType "Term is not a boolean.")
)
| First (x) -> (
let* typex = evaluate_type x context in
match typex with
| (TupleType (x, _)) -> Ok x
| (_) -> Error (`WrongType "Term is not a tuple.")
)
| Second (x) -> (
let* typex = evaluate_type x context in
match typex with
| (TupleType (_, x)) -> Ok x
| (_) -> Error (`WrongType "Term is not a tuple.")
)
| Cmp (x, y)
| CmpLess (x, y)
| CmpLessEq (x, y)
| CmpGreater (x, y)
| CmpGreaterEq (x, y) -> (
let* typex = evaluate_type x context in
let* typey = evaluate_type y context in
match typex, typey with
| (IntegerType, IntegerType) -> Ok BooleanType
| (IntegerType, _) -> Error (`WrongType "Second term is not an integer.")
| (_, _) -> Error (`WrongType "First term is not an integer.")
)
| IfThenElse (guard, if_exp, else_exp) -> (
let* typeguard = evaluate_type guard context in
let* typeif_exp = evaluate_type if_exp context in
let* typeelse_exp = evaluate_type else_exp context in
match typeguard, typeif_exp, typeelse_exp with
(BooleanType, t1, t2) -> (
if t1 = t2 then
Ok t1
else
Error (`WrongType "If branches do not have the same type.")
)
| (_, _, _) -> Error (`WrongType "If guard is not a boolean.")
)
| LetIn (x, xval, rest) ->
(* bind the type to the variable name in the context *)
let* typex = evaluate_type xval context in
evaluate_type rest (VariableMap.add x typex context)
| LetFun (f, x, typef, fbody, rest) ->
(* like with the function case, but also add f itself to the bindings *)
match typef with
FunctionType (tin, tout) -> (
let newcontext = VariableMap.add f typef context in
let newcontextwithx = VariableMap.add x tin newcontext in
let* typefbody = evaluate_type fbody newcontextwithx in
let* typerest = evaluate_type rest newcontext in
match (typefbody = tout, typerest) with
(false, _) -> Error (`WrongTypeSpecification
"Function does not return specified type.")
| (true, t) -> Ok t
)
| _ -> Error (`WrongTypeSpecification
"Specification of function is not a function type.")
let typecheck (program: t_exp) : (ftype, [> typechecking_error]) result =
let* typeprogram = evaluate_type program VariableMap.empty in
match typeprogram with
FunctionType (IntegerType, IntegerType) -> Ok (typeprogram)
| _ -> Error (`WrongType "Program is not a function from int to int.")
let typecheck_polymorphic (program: t_exp)
: (type_f, [> typechecking_error]) result =
global_type_id := 0;
let* type_program = evaluate_type_polimorphic program VariableMap.empty 0 in
let* _ = unifyable type_program (FunctionTypeP (IntegerTypeP, IntegerTypeP))
in
let generalized_ty = generalize (-1) type_program in
Ok (generalized_ty)