
1 Implementation Design

1.1 Design Choices

The class Stencil holds both the parallel implementation using the FastFlow library and using
the native C++ threads. The one using C++ threads can be called with the method stdthread.
The operator () instead will use the FastFlow library. The class can also be used as a node;
an example is given in the file “main.cpp”, where using the function fastflow creates a pipe
between the reader, the stencil and the writer.

Figure 1:

The class Reader reads a binary file composed of 4 bytes representing the number of rows,
4 bytes representing the number of columns and then the raw matrix data. Each element is a
char. The result is stored in the class Task which will be passed to the next node. If instead
the operator () is called, only the data will be returned as a pointer.

The Writer instead writes to disk the task to the same folder, overwriting existing files if
present.

1.2 Native C++ Threads

The structure of the implementation with native C++ threads is as follows:
The threadpool is implemented in the threadPool.hpp and threadPool.cpp files.
Since for each element the work is equivalent, the ∆ used in the lambda function is simply

the total number of rows divided by the number of workers, such that each worker has only
one job and all jobs are roughly equal in time.

The threadpool uses a queue and once a job is pushed only one thread may execute the
function. Since it is required for all jobs to finish, a condition variable is used to wake a thread
that is waiting for all jobs to finish, eliminating the need for active wait.

1.3 FastFlow

The structure of the implementation using the FastFlow is similar to the one with native
threads. Since the Stencil class is a subclass of ff Map, the method used for the execution is
parallel for.

A custom emitter and collector would not have been faster and so the simpler approach of
inheriting the methods from ff Map was chosen.

2 Performance Analysis

The matrix data inside the class Task was both tested for performance as a vector of vectors
and as a simple contiguous arena. The performance was exaclty the same so the simpler vector
of vectors implementation was preferred.

In the file main.cpp a csv file is created from various tests on files from the tests/ direc-
tory. The time computed is for reading the file from disk, computing the stencil with different
parameters and finally writing again to disk. Reading and writing to disk are much faster than

1



1: procedure stdthread(Input, Output)
2: for result ∈ Input do
3: arena = result
4: while iter > 0 do
5: for thread ∈ ThreadPool do
6: send a new LAMBDA with appropriate bounds to the threadpool
7: end for
8: swap arena with result
9: iter = iter − 1
10: end while
11: wait for the threadpool to finish
12: push result to Output
13: end for
14: end procedure

1: procedure lambda(l,∆) ▷ l is the thread number, ∆ is the ammount of rows to process
2: for x ∈ {l ·∆, . . . , (l + 1) ·∆− 1} do
3: for y ∈ {0, . . . , Columns} do
4: if then(x, y) not in the border
5: calculate the neighborhood of (x, y)
6: arena[x][y] = Stencil(neighborhood)
7: end if
8: end for
9: end for
10: end procedure

1: procedure fastflow(Task)
2: arena = Task
3: while iter > 0 do
4: parallel for with LAMBDA as the function to execute
5: swap arena with result
6: iter = iter − 1
7: end while
8: return task
9: end procedure

1: procedure lambda(x)
2: for y ∈ {0, . . . , Columns} do
3: if then(x, y) not in the border
4: calculate the neighborhood of (x, y)
5: arena[x][y] = Stencil(neighborhood)
6: end if
7: end for
8: end procedure

2



the computation except for the largest examples. In those cases the minimum time of reading
and writing is subtracted.

For very small matrices the efficiency, the speedup and the scalability is very poor for both
versions. For larger examples instead a significant speedup is seen, but the implementation
using native threads is slightly faster.

Image Time in µs Size in B

empty2x2 2218 12

increasing4x6 2054 32

increasing300x200 1301 60008

random400x2500 7101 1000008

equation 786324 10000008

equation2 2312927 30000008

0 8 16 24 32 40 48 56 64
0

0.2

0.4

0.6

0.8

1

1.2

1.4

fastflow

Speedup
Scalability
Efficiency

0 8 16 24 32 40 48 56 64
0

2

4

6

8

stdthread

Speedup
Scalability
Efficiency

increasing300x200

3



0 8 16 24 32 40 48 56 64
0

1

2

3

4

5

6

7

fastflow

Speedup
Scalability
Efficiency

0 8 16 24 32 40 48 56 64
0

2

4

6

8

10

12

stdthread

Speedup
Scalability
Efficiency

random400x2500

4



0 8 16 24 32 40 48 56 64
0

5

10

15

20

25

fastflow

Speedup
Scalability
Efficiency

0 8 16 24 32 40 48 56 64
0

5

10

15

20

25

stdthread

Speedup
Scalability
Efficiency

equation

5



0 8 16 24 32 40 48 56 64
0

5

10

15

20

25

fastflow

Speedup
Scalability
Efficiency

0 8 16 24 32 40 48 56 64
0

5

10

15

20

25

30

stdthread

Speedup
Scalability
Efficiency

equation2

As the size of the input increases the speedup and the scalability both follow linear trends
up with a higher ammount of threds.

The scalability for both test files equation and equation2 never go below 0.37, but is
slightly better for the implementation with native C++ threads.

6


	Implementation Design
	Design Choices
	Native C++ Threads
	FastFlow

	Performance Analysis

