1 Implementation Design

1.1 Design Choices

The class Stencil holds both the parallel implementation using the FastFlow library and using
the native C4++ threads. The one using C++ threads can be called with the method stdthread.
The operator () instead will use the FastFlow library. The class can also be used as a node;
an example is given in the file “main.cpp”, where using the function fastflow creates a pipe
between the reader, the stencil and the writer.

Reader

Figure 1:

The class Reader reads a binary file composed of 4 bytes representing the number of rows,
4 bytes representing the number of columns and then the raw matrix data. Each element is a
char. The result is stored in the class Task which will be passed to the next node. If instead
the operator () is called, only the data will be returned as a pointer.

The Writer instead writes to disk the task to the same folder, overwriting existing files if
present.

1.2 Native C++4 Threads

The structure of the implementation with native C++ threads is as follows:

The threadpool is implemented in the threadPool.hpp and threadPool.cpp files.

Since for each element the work is equivalent, the A used in the lambda function is simply
the total number of rows divided by the number of workers, such that each worker has only
one job and all jobs are roughly equal in time.

The threadpool uses a queue and once a job is pushed only one thread may execute the
function. Since it is required for all jobs to finish, a condition variable is used to wake a thread
that is waiting for all jobs to finish, eliminating the need for active wait.

1.3 FastFlow

The structure of the implementation using the FastFlow is similar to the one with native
threads. Since the Stencil class is a subclass of £f Map, the method used for the execution is
parallel_for.

A custom emitter and collector would not have been faster and so the simpler approach of
inheriting the methods from ff Map was chosen.

2 Performance Analysis

The matrix data inside the class Task was both tested for performance as a vector of vectors
and as a simple contiguous arena. The performance was exaclty the same so the simpler vector
of vectors implementation was preferred.

In the file main.cpp a csv file is created from various tests on files from the tests/ direc-
tory. The time computed is for reading the file from disk, computing the stencil with different
parameters and finally writing again to disk. Reading and writing to disk are much faster than

1: procedure STDTHREAD (Input, Output)
2 for result € Input do

3 arena = result

4 while iter > 0 do

5: for thread € ThreadPool do
6 send a new LAMBDA with appropriate bounds to the threadpool
7 end for

8 swap arena with result

9: iter = iter — 1

10: end while

11: wait for the threadpool to finish
12: push result to Output

13: end for

14: end procedure

1: procedure LAMBDA(l, A) > [is the thread number, A is the ammount of rows to process
2 forze{l-A,....,(l+1)-A—1} do

3 for y € {0,...,Columns} do

4: if then(z,y) not in the border

5: calculate the neighborhood of (z,y)

6 arenalz||y] = Stencil(neighborhood)

7 end if

8 end for

9 end for

10: end procedure

procedure FASTFLOW (T'ask)
arena = Task
while iter > 0 do
parallel for with LAMBDA as the function to execute
swap arena with result
iter = iter — 1
end while
return task
end procedure

procedure LAMBDA (z)
for y € {0,...,Columns} do
if then(z,y) not in the border
calculate the neighborhood of (z,y)
arenalz|[y] = Stencil(neighborhood)
end if
end for
end procedure

the computation except for the largest examples. In those cases the minimum time of reading
and writing is subtracted.

For very small matrices the efficiency, the speedup and the scalability is very poor for both
versions. For larger examples instead a significant speedup is seen, but the implementation
using native threads is slightly faster.

Image Time in ps | Size in B
empty2x2 2218 12
increasing4x6 2054 32
increasing300x200 1301 60008
random400x2500 7101 | 1000008
equation 786324 | 10000008
equation2 2312927 | 30000008
increasing300x200
fastflow
4 % | | | | | | | | |-+ Speedup
—=— Scalability

—e— Efficiency

0 8 16 24 32 40 48 56 64
stdthread

—e— Speedup
—=— Scalability
—e— Efficiency

random400x2500
fastflow

r | | |—e— Speedup

—=— Scalability
—e— Efficiency

! | ! | ! | ! T 1 [1 I I f I
0 0 8 16 24 32 40 48 56 64
stdthread

12 —e— Speedup
¢ & | = Scalability
—e— Efficiency

equation

fastflow
25+ | —o— Speedup
. —=— Scalability
—e— Efficiency
20 |
15
10 |-
5 -
0 I ! ! [1 ® I I I f T
0 8 16 24 32 40 48 56 64
stdthread
o —e— Speedup
—=— Scalability

—e— Efficiency

equation?2

fastflow
25 F —eo— Speedup
. —=— Scalability
—e— Efficiency
20 |
15
10 |-
5 [
0 . . ‘ . ® I I ‘ ‘ j ‘ ®
0 8 16 24 32 40 48 56 64
stdthread
| | —eo— Speedup
—=— Scalability

—e— Efficiency

| | hd 1 I I I I 1

‘ hd ‘ hd I : ®
0 8 16 24 32 40 48 56 64

As the size of the input increases the speedup and the scalability both follow linear trends
up with a higher ammount of threds.

The scalability for both test files equation and equation2 never go below 0.37, but is
slightly better for the implementation with native C4++ threads.

	Implementation Design
	Design Choices
	Native C++ Threads
	FastFlow

	Performance Analysis

