UNIVERSITA DI P1sA

Master Degree in Computer Science
Report for Parallel and Distributed Systems: paradigms and models

“Stencil” parallel pattern

Teachers: Student:
Prof. Marco Danelutto Elvis Rossi
Prof. Patrizio Dazzi ID: 561394

Academic year 2022—2023

Contents
1 Building and Executing the project

2 Implementation Design

2.1 Design Choices e
2.2 Native C+-+ Threads
2.3 FastFlow

3 Performance Analysis

1 Building and Executing the project

The project uses cmake to create the native makefiles. The flag CMAKE_BUILD _TYPE can be used
to specify the type of build; two options are supported: Debug and Release. The main file
creates a .csv file with the execution time of different test cases with input files located in
./tests. On MacOS, thread pinning for the Fastflow library is disabled since is not supported
by the operating system.

To compile and run the project:

cmake -DCMAKE_BUILD_TYPE=Release -S . -B build/
cd build/

make

./main

2 Implementation Design

2.1 Design Choices

The class Stencil holds both the parallel implementation using the FastFlow library and using
the native C4++ threads. The one using C++ threads can be called with the method stdthread.
The operator () instead will use the FastFlow library. The class can also be used as a node;
an example is given in the file “main.cpp”, where using the function fastflow creates a pipe
between the reader, the stencil and the writer.

Reader

Figure 1:

The class Reader reads a binary file composed of 4 bytes representing the number of rows,
4 bytes representing the number of columns and then the raw matrix data. Each element is a
char in all the test cases. The result is stored in the class Task which will be passed to the
next node. If instead the operator () is called, only the data will be returned as a pointer.

The Task class can support matrices of different element type other than char.

The Writer instead writes to disk the task to the same folder, overwriting existing files if
present.

The Stencil class divides the matrix in roughly equal parts and distributes them to other
workers. Since the ammount of work for simple stencil functions is roughly equal between blocks
of columns, the matrix is split into equal blocks and each block is processed by a different worker.
The result is stored in a copy of the original matrix and the pointers swapped at the end of
each iteration. Since a neighbourhood of columns is needed for the next iteration, the simplest
solution of waiting for all workers has been implemented. A countiguous block of columns
reduces the probability of false sharing. The loops of the workers thread cannot be vectorized
by the compiler since the stencil function may be calling library functions or use conditional
statements.

2.2 Native C++ Threads

The structure of the implementation with native C++ threads is as follows:

1: procedure STDTHREAD (Input, Output)
2 for result € Input do

3 arena = result

4: while iter > 0 do

5: for thread € ThreadPool do
6 send a new LAMBDA with appropriate bounds to the threadpool
7 end for

8 swap arena with result

9: iter = iter — 1

10: end while

11: wait for the threadpool to finish
12: append result to Output

13: end for

14: end procedure

1: procedure LAMBDA([, A) > [is the index of block of rows, A is the number of rows
2 forze{l-A,....(l+1)-A—1} do

3 for y € {0,...,Columns} do

4 if (z,y) not in the border then

5: calculate the neighborhood of (x,y)

6 arenalx]y] = Stencil(neighborhood)

7 end if

8 end for

9: end for

10: end procedure

The threadpool is implemented in the threadPool.hpp and threadPool. cpp files.

Since for each element the work is equivalent, the A used in the lambda function is simply
the total number of rows divided by the number of workers, such that each worker has only
one job and all jobs are roughly equal in time.

The threadpool uses a queue and once a job is pushed only one thread may execute the
function. Since it is required for all jobs to finish, a condition variable is used to wake a thread
that is waiting for all jobs to finish, eliminating the need for active wait.

2.3 FastFlow

The structure of the implementation using the FastFlow is similar to the one with native
threads. Since the Stencil class is a subclass of £f Map, the method used for the execution is
parallel_for.

A custom emitter and collector would not have been significantly faster and so the simpler
approach of inheriting the methods from ff Map was chosen. A custom emitter would have had
to split the range in the same number of blocks as number of workers and the custom collector
would have had to function as a barrier for all workers.

procedure FASTFLOW (T 'ask)
arena = Task
while iter > 0 do
parallel for with LAMBDA as the function to execute
swap arena with Task
iter = iter — 1
end while
return Task
end procedure

procedure LAMBDA()
for y € {0,...,Columns} do
if (z,y) not in the border then
calculate the neighborhood of (x,y)
arenalx]ly] = Stencil(neighborhood)
end if
end for
end procedure

3 Performance Analysis

The matrix data inside the class Task was both tested for performance as a vector of vectors
and as a simple contiguous arena. The performance was exactly the same so the simpler vector
of vectors implementation was preferred.

In the file main.cpp a csv file is created from various tests on files from the tests/ direc-
tory. The time computed is for reading the file from disk, computing the stencil with different
parameters and finally writing again to disk. Instead of averaging the times of different runs,
the minimum of the runs is chosen since outliers skew the mean greatly. Reading and writing
to disk are much faster than the computation except for the largest examples. In those cases
the minimum time of reading and writing is subtracted.

Since

ﬂotal - TReader + TStencil + TWriter

and the value of Tgeager + Turiter 18 known on average then the values speedup, scalability
and efficiency are calculated as follows

ﬂeq - (TReader + TWriter>

Speedup(n) =
P p() Tpar (n) - (TReader + TWriter>
1. T ar(l) - (TReader + TWriter)
Scalability(n) = ==
y<) Tpar (TL) - (TReader + TWriter)
d
Efficiency(n) = 2Poedup(n)
n

For very small matrices the efficiency, the speedup and the scalability is very poor for both
versions. For larger examples instead a significant speedup is seen, but the implementation
using native threads is slightly faster.

Image Theader + Turiter in ps | Size in B
empty2x2 2218 12
increasing4x6 2054 32
increasing300x200 1301 60008
random400x2500 7101 | 1000008
equation 786324 | 10000008
equation2 2312927 | 30000008

increasing300x200
Fastflow

—e— Speedup
—=— Scalability

32 —e— Efficiency

0.5

0.0625

0.00782

T T T T T T T e Speedup
9 | |-=Scalability
321 | T —e— Efficiency
4 L
0.5 i
0.0625 b
0.00782 1 1 1 1 1 1 1 a
8 16 24 32 40 48 56 64

For the file increasing300x200 the fastflow has a peek of speedup and scalability when
using 4 workers in the stencil stage but quickly looses performance due to the small size of the
input. For the native thread version instead the speedup and the scalability always stays above
1 but has a peek at 32 workers.

32

0.5

0.0625

0.00782

32

0.5

0.0625

0.00782

random400x2500

Fastflow

|

|

24

32

40

Native Threads

—e— Speedup
—=— Scalability
—eo— Efficiency

|

|

|

|

|

|

16

24

32

40

48

26

64

—e— Speedup
—=— Scalability
—eo— Efficiency

The file random400x2500 performs best with 16 workers in the Fastflow implementation
and in the native thread implementation performs slightly better at 64 workers compared to 32
workers in terms of speedup and scalability, but has a significant drop in efficiency from 0.361
to 0.184. The relationship between number of workers and speedup is close to linear up to 8

workers.

equation
Fastflow

—e— Speedup
—=— Scalability
—eo— Efficiency

05Af"""‘R*“*"*‘“‘*‘*‘*‘*‘**-———--———————-—---;

0.0625 |- i

T
|

0.00782

| I | I | I | I | I | I |

8 16 24 39 40 18 56 64
Native Threads

—e— Speedup
—=— Scalability
—eo— Efficiency

0.5 |

0.0625

0.00782

l l

|

|

|

|

|

8 16

24

32

40

48

o6

64

The file equation more closely follows a linear relationship between speedup or scalability
and number of workers for both versions.

0.5

0.0625

0.00782

0.5

0.0625

0.00782

equation?2
Fastflow

—e— Speedup
—=— Scalability
—eo— Efficiency

i N\ﬂ\.\;
B | I | | | | | | |
8 16 24 32 40 48 56 64
Native Threads
T T T T T T T T T T . Speedup

—=— Scalability

—eo— Efficiency

l l

|

|

|

|

|

8 16

24

32

40

48

o6

64

As the size of the input increases the speedup and the scalability both follow linear trends
up with a higher amount of threads.
The scalability for both test files equation and equation2 never go below 0.37, but is

slightly better for the implementation with native C++ threads.

The difference in the three quantities between the test with file equation and the test with
file equationl is much smaller for the Fastflow version. In the native thread version instead

there is a small improvement especially with a higher number of workers.

	Building and Executing the project
	Implementation Design
	Design Choices
	Native C++ Threads
	FastFlow

	Performance Analysis

