Adding simple Algorithm W implementation (no recursive functions)
This commit is contained in:
@ -5,54 +5,256 @@ Random.self_init ()
|
||||
|
||||
let (let*) = Result.bind
|
||||
|
||||
let evaluate_type_polimorphic (_program: t_exp) (_context: typingshape)
|
||||
: (typingshape, error) result =
|
||||
failwith "Not implemented"
|
||||
(* match program with *)
|
||||
(* Integer _ -> Ok (VariableMap.empty, IntegerType) *)
|
||||
(* | Boolean _ -> Ok (VariableMap.empty, BooleanType) *)
|
||||
(* | Variable x -> ( *)
|
||||
(* match (VariableMap.find_opt x (fst context)) with *)
|
||||
(* (None) -> ( *)
|
||||
(* let u = PolimorphicType (Utility.from_int_to_string !globalIdentifier) in *)
|
||||
(* globalIdentifier := !globalIdentifier + 1; *)
|
||||
(* Ok (VariableMap.singleton x u, u) *)
|
||||
(* ) *)
|
||||
(* | (Some u) -> Ok (VariableMap.singleton x u, u) *)
|
||||
(* ) *)
|
||||
(* | Function (xs, typef, fbody) -> failwith "Not Implemented" *)
|
||||
(* | Application (f, xs) -> failwith "Not Implemented" *)
|
||||
(* | Plus (x, y) *)
|
||||
(* | Minus (x, y) *)
|
||||
(* | Times (x, y) *)
|
||||
(* | Division (x, y) *)
|
||||
(* | Modulo (x, y) *)
|
||||
(* | Power (x, y) -> ( *)
|
||||
(* let* partialResx = evaluate_type x context in *)
|
||||
(* let* partialResy = evaluate_type y context in *)
|
||||
(* match (partialResx, partialResy) with *)
|
||||
(* ((conx, IntegerType), (cony, IntegerType)) -> *)
|
||||
(* Ok (VariableMap.union (fun _ x _ -> Some x) conx cony, *)
|
||||
(* FunctionType ([IntegerType; IntegerType], IntegerType)) *)
|
||||
(* | ((conx, PolimorphicType xv), (cony, IntegerType)) -> *)
|
||||
(* Ok (unify ) *)
|
||||
(* | ((_conx, IntegerType), (_cony, PolimorphicType _yv)) *)
|
||||
(* | ((_conx, PolimorphicType _xv), (_cony, PolimorphicType _yv)) -> failwith "ads" *)
|
||||
(* | (_, _) -> Error (`WrongType "The arguments are of the wrong type") *)
|
||||
(* ) *)
|
||||
(* | PowerMod (x, y, z) -> failwith "Not Implemented" *)
|
||||
(* | Rand (x) -> failwith "Not Implemented" *)
|
||||
(* | BAnd (x, y) *)
|
||||
(* | BOr (x, y) -> failwith "Not Implemented" *)
|
||||
(* | BNot (x) -> failwith "Not Implemented" *)
|
||||
(* | Cmp (x, y) *)
|
||||
(* | CmpLess (x, y) *)
|
||||
(* | CmpLessEq (x, y) *)
|
||||
(* | CmpGreater (x, y) *)
|
||||
(* | CmpGreaterEq (x, y) -> failwith "Not Implemented" *)
|
||||
(* | IfThenElse (guard, if_exp, else_exp) -> failwith "Not Implemented" *)
|
||||
(* | LetIn (x, xval, rest) -> failwith "Not Implemented" *)
|
||||
(* | LetFun (f, xs, typef, fbody, rest) -> failwith "Not Implemented" *)
|
||||
(* -------------------------------------------------------------------------- *)
|
||||
(* polimporphic type checking *)
|
||||
(* -------------------------------------------------------------------------- *)
|
||||
|
||||
let global_type_id = ref 0
|
||||
|
||||
let new_global_id () =
|
||||
let id = !global_type_id in
|
||||
incr global_type_id;
|
||||
id
|
||||
|
||||
|
||||
let rec unify type_a type_b =
|
||||
if type_a == type_b then Ok () else
|
||||
match (type_a, type_b) with
|
||||
| IntegerTypeP, IntegerTypeP
|
||||
| BooleanTypeP, BooleanTypeP ->
|
||||
Ok ()
|
||||
|
||||
| TupleTypeP (a1, a2), TupleTypeP (b1, b2)
|
||||
| ApplicationP (a1, a2), ApplicationP (b1, b2)
|
||||
| FunctionTypeP (a1, a2), FunctionTypeP (b1, b2) ->
|
||||
let* _ = unify a1 b1 in
|
||||
unify a2 b2
|
||||
|
||||
| VariableTypeP ({contents = Link a1}),
|
||||
VariableTypeP ({contents = Link b1}) ->
|
||||
unify a1 b1
|
||||
|
||||
| VariableTypeP ({contents = Link ty_link}), ty_rest
|
||||
| ty_rest, VariableTypeP ({contents = Link ty_link})
|
||||
when ty_link = ty_rest ->
|
||||
Ok ()
|
||||
|
||||
| VariableTypeP ({contents = Unbound (a1, _)}),
|
||||
VariableTypeP ({contents = Unbound (b1, _)})
|
||||
when a1 = b1 ->
|
||||
Error (`WrongType "Only a single instance of a type should be available.")
|
||||
|
||||
| type_ab, VariableTypeP ({contents = Unbound (_id, _level)} as tvar)
|
||||
| VariableTypeP ({contents = Unbound (_id, _level)} as tvar), type_ab ->
|
||||
tvar := Link type_ab;
|
||||
Ok ()
|
||||
|
||||
| _, _ ->
|
||||
Error (`WrongType "Cannot unify types.")
|
||||
|
||||
let rec unifyable type_a type_b =
|
||||
if type_a == type_b then Ok () else
|
||||
match (type_a, type_b) with
|
||||
| IntegerTypeP, IntegerTypeP
|
||||
| BooleanTypeP, BooleanTypeP ->
|
||||
Ok ()
|
||||
|
||||
| TupleTypeP (a1, a2), TupleTypeP (b1, b2)
|
||||
| ApplicationP (a1, a2), ApplicationP (b1, b2)
|
||||
| FunctionTypeP (a1, a2), FunctionTypeP (b1, b2) ->
|
||||
let* _ = unifyable a1 b1 in
|
||||
unifyable a2 b2
|
||||
|
||||
| VariableTypeP ({contents = Link a1}),
|
||||
VariableTypeP ({contents = Link b1}) ->
|
||||
unifyable a1 b1
|
||||
|
||||
| VariableTypeP ({contents = Link ty_link}), ty_rest
|
||||
| ty_rest, VariableTypeP ({contents = Link ty_link})
|
||||
when ty_link = ty_rest ->
|
||||
Ok ()
|
||||
|
||||
| VariableTypeP ({contents = Unbound (a1, _)}),
|
||||
VariableTypeP ({contents = Unbound (b1, _)})
|
||||
when a1 = b1 ->
|
||||
Error (`WrongType "Only a single instance of a type should be available.")
|
||||
|
||||
| _type_ab, VariableTypeP ({contents = Unbound (_id, _level)})
|
||||
| VariableTypeP ({contents = Unbound (_id, _level)}), _type_ab ->
|
||||
Ok ()
|
||||
|
||||
| _, _ ->
|
||||
Error (`WrongType "Cannot unify types.")
|
||||
|
||||
let rec generalize level ty =
|
||||
match ty with
|
||||
| VariableTypeP {contents = Unbound (id, o_level)} when o_level > level ->
|
||||
VariableTypeP (ref (Generic id))
|
||||
| ApplicationP (ty, ty_arg) ->
|
||||
ApplicationP (generalize level ty, generalize level ty_arg)
|
||||
| FunctionTypeP (ty_arg, ty) ->
|
||||
FunctionTypeP (generalize level ty_arg, generalize level ty)
|
||||
| TupleTypeP (ty1, ty2) ->
|
||||
TupleTypeP (generalize level ty1, generalize level ty2)
|
||||
| VariableTypeP {contents = Link ty} ->
|
||||
generalize level ty
|
||||
| VariableTypeP {contents = Generic _}
|
||||
| VariableTypeP {contents = Unbound _}
|
||||
| IntegerTypeP
|
||||
| BooleanTypeP ->
|
||||
ty
|
||||
|
||||
|
||||
let instantiate level ty =
|
||||
let var_map = ref IntegerMap.empty in
|
||||
let rec aux ty =
|
||||
match ty with
|
||||
| IntegerTypeP
|
||||
| BooleanTypeP ->
|
||||
ty
|
||||
| TupleTypeP (ty1, ty2) ->
|
||||
TupleTypeP (aux ty1, aux ty2)
|
||||
| VariableTypeP {contents = Link ty} ->
|
||||
aux ty
|
||||
| VariableTypeP {contents = Generic id} -> (
|
||||
match IntegerMap.find_opt id !var_map with
|
||||
| Some ty -> ty
|
||||
| None ->
|
||||
let var = VariableTypeP (ref (Unbound (new_global_id (), level))) in
|
||||
var_map := IntegerMap.add id var !var_map;
|
||||
var
|
||||
)
|
||||
| VariableTypeP {contents = Unbound _} ->
|
||||
ty
|
||||
| ApplicationP (ty, ty_arg) ->
|
||||
ApplicationP (aux ty, aux ty_arg)
|
||||
| FunctionTypeP (ty_arg, ty) ->
|
||||
FunctionTypeP (aux ty_arg, aux ty)
|
||||
in
|
||||
aux ty
|
||||
|
||||
|
||||
let rec evaluate_type_polimorphic program (env: env) level =
|
||||
match program with
|
||||
| Integer _ -> Ok (IntegerTypeP)
|
||||
| Boolean _ -> Ok (BooleanTypeP)
|
||||
| Tuple (a, b) ->
|
||||
let* type_a = evaluate_type_polimorphic a env level in
|
||||
let* type_b = evaluate_type_polimorphic b env level in
|
||||
Ok (TupleTypeP (type_a, type_b))
|
||||
| Variable (x) -> (
|
||||
match VariableMap.find_opt x env with
|
||||
| Some (ty) ->
|
||||
Ok (instantiate level ty)
|
||||
| None ->
|
||||
Error (`AbsentAssignment ("Variable " ^ x ^ " is not assigned."))
|
||||
)
|
||||
| Function (x, _typef, fbody) ->
|
||||
let param_type = VariableTypeP (ref (Unbound (new_global_id (), level))) in
|
||||
let fn_env = VariableMap.add x param_type env in
|
||||
let* body_type = evaluate_type_polimorphic fbody fn_env level in
|
||||
Ok (FunctionTypeP (param_type, body_type))
|
||||
| Application (f, xs) ->
|
||||
let* type_f = evaluate_type_polimorphic f env level in
|
||||
let rec aux =
|
||||
function
|
||||
| FunctionTypeP (type_f_arg, type_f) ->
|
||||
Ok (type_f_arg, type_f)
|
||||
| VariableTypeP {contents = Link ty} ->
|
||||
aux ty
|
||||
| VariableTypeP ({contents = Unbound(_id, level)} as tvar) ->
|
||||
let param_ty = VariableTypeP (ref (Unbound (new_global_id (), level)))
|
||||
in
|
||||
let f_ty = VariableTypeP (ref (Unbound (new_global_id (), level))) in
|
||||
tvar := Link ( FunctionTypeP (param_ty, f_ty) );
|
||||
Ok (param_ty, f_ty)
|
||||
| _ -> Error (`WrongType "Expecting a function to apply.")
|
||||
in
|
||||
let* param_ty, f_ty = aux type_f in
|
||||
let* type_xs = evaluate_type_polimorphic xs env level in
|
||||
let* _ = unify param_ty type_xs in
|
||||
Ok f_ty
|
||||
| Plus (a, b)
|
||||
| Minus (a, b)
|
||||
| Times (a, b)
|
||||
| Division (a, b)
|
||||
| Modulo (a, b)
|
||||
| Power (a, b) ->
|
||||
let* type_a = evaluate_type_polimorphic a env level in
|
||||
let* type_b = evaluate_type_polimorphic b env level in
|
||||
let* _ = unify type_a IntegerTypeP in
|
||||
let* _ = unify type_b IntegerTypeP in
|
||||
Ok (IntegerTypeP)
|
||||
| First a -> (
|
||||
let* type_a = evaluate_type_polimorphic a env level in
|
||||
let* _ = unify type_a
|
||||
(TupleTypeP(VariableTypeP (ref (Unbound (new_global_id (), level))),
|
||||
VariableTypeP (ref (Unbound (new_global_id (), level)))))
|
||||
in
|
||||
match type_a with
|
||||
| TupleTypeP (ty_a, _)
|
||||
| VariableTypeP {contents = Link TupleTypeP (ty_a, _)} -> Ok ty_a
|
||||
| _ -> Error (`WrongType "Applying First to non tuple type.")
|
||||
)
|
||||
| Second a -> (
|
||||
let* type_a = evaluate_type_polimorphic a env level in
|
||||
let* _ = unify type_a
|
||||
(TupleTypeP(VariableTypeP (ref (Unbound (new_global_id (), level))),
|
||||
VariableTypeP (ref (Unbound (new_global_id (), level)))))
|
||||
in
|
||||
match type_a with
|
||||
| TupleTypeP (_, ty_a)
|
||||
| VariableTypeP {contents = Link TupleTypeP (_, ty_a)} -> Ok ty_a
|
||||
| _ -> Error (`WrongType "Applying Second to non tuple type.")
|
||||
)
|
||||
| PowerMod (x, y, z) ->
|
||||
let* type_x = evaluate_type_polimorphic x env level in
|
||||
let* type_y = evaluate_type_polimorphic y env level in
|
||||
let* type_z = evaluate_type_polimorphic z env level in
|
||||
let* _ = unify type_x IntegerTypeP in
|
||||
let* _ = unify type_y IntegerTypeP in
|
||||
let* _ = unify type_z IntegerTypeP in
|
||||
Ok (IntegerTypeP)
|
||||
| Rand (x) ->
|
||||
let* type_x = evaluate_type_polimorphic x env level in
|
||||
let* _ = unify type_x IntegerTypeP in
|
||||
Ok (IntegerTypeP)
|
||||
| BAnd (a, b)
|
||||
| BOr (a, b) ->
|
||||
let* type_a = evaluate_type_polimorphic a env level in
|
||||
let* type_b = evaluate_type_polimorphic b env level in
|
||||
let* _ = unify type_a BooleanTypeP in
|
||||
let* _ = unify type_b BooleanTypeP in
|
||||
Ok (BooleanTypeP)
|
||||
| BNot (x) ->
|
||||
let* type_x = evaluate_type_polimorphic x env level in
|
||||
let* _ = unify type_x BooleanTypeP in
|
||||
Ok (BooleanTypeP)
|
||||
| Cmp (a, b)
|
||||
| CmpLess (a, b)
|
||||
| CmpLessEq (a, b)
|
||||
| CmpGreater (a, b)
|
||||
| CmpGreaterEq (a, b) ->
|
||||
let* type_a = evaluate_type_polimorphic a env level in
|
||||
let* type_b = evaluate_type_polimorphic b env level in
|
||||
let* _ = unify type_a IntegerTypeP in
|
||||
let* _ = unify type_b IntegerTypeP in
|
||||
Ok (BooleanTypeP)
|
||||
| IfThenElse (guard, if_exp, else_exp) ->
|
||||
let* type_guard = evaluate_type_polimorphic guard env level in
|
||||
let* type_if_exp = evaluate_type_polimorphic if_exp env level in
|
||||
let* type_else_exp = evaluate_type_polimorphic else_exp env level in
|
||||
let* _ = unify type_guard BooleanTypeP in
|
||||
let* _ = unify type_if_exp type_else_exp in
|
||||
Ok (type_if_exp)
|
||||
| LetIn (x, xval, rest) ->
|
||||
let* var_ty = evaluate_type_polimorphic xval env (level + 1) in
|
||||
let generalized_ty = generalize level var_ty in
|
||||
evaluate_type_polimorphic rest (VariableMap.add x generalized_ty env) level
|
||||
| LetFun (_f, _xs, _typef, _fbody, _rest) -> failwith "Not Implemented"
|
||||
|
||||
(* -------------------------------------------------------------------------- *)
|
||||
|
||||
|
||||
let rec evaluate_type (program: t_exp) (context: ftype VariableMap.t) :
|
||||
(ftype, [> typechecking_error]) result =
|
||||
@ -201,10 +403,19 @@ let rec evaluate_type (program: t_exp) (context: ftype VariableMap.t) :
|
||||
| _ -> Error (`WrongTypeSpecification
|
||||
"Specification of function is not a function type.")
|
||||
|
||||
|
||||
let typecheck (program: t_exp) : (ftype, [> typechecking_error]) result =
|
||||
let* typeprogram = evaluate_type program VariableMap.empty in
|
||||
match typeprogram with
|
||||
FunctionType (IntegerType, IntegerType) -> (
|
||||
Ok (typeprogram)
|
||||
)
|
||||
FunctionType (IntegerType, IntegerType) -> Ok (typeprogram)
|
||||
| _ -> Error (`WrongType "Program is not a function from int to int.")
|
||||
|
||||
|
||||
let typecheck_polymorphic (program: t_exp)
|
||||
: (type_f, [> typechecking_error]) result =
|
||||
global_type_id := 0;
|
||||
let* type_program = evaluate_type_polimorphic program VariableMap.empty 0 in
|
||||
let* _ = unifyable type_program (FunctionTypeP (IntegerTypeP, IntegerTypeP))
|
||||
in
|
||||
let generalized_ty = generalize (-1) type_program in
|
||||
Ok (generalized_ty)
|
||||
|
||||
@ -1 +1,3 @@
|
||||
val typecheck : Types.t_exp -> (Types.ftype, [> Types.typechecking_error]) result
|
||||
|
||||
val typecheck_polymorphic : Types.t_exp -> (Types.type_f, [> Types.typechecking_error]) result
|
||||
|
||||
@ -5,18 +5,79 @@ let globalIdentifier = ref 1
|
||||
module VariableMap = Map.Make(String)
|
||||
module VariableSet = Set.Make(String)
|
||||
|
||||
type ftype =
|
||||
(* -------------------------------------------------------------------------- *)
|
||||
(* polimporphic type checking types *)
|
||||
(* -------------------------------------------------------------------------- *)
|
||||
|
||||
type id = int
|
||||
type level = int
|
||||
|
||||
type type_f =
|
||||
IntegerTypeP
|
||||
| BooleanTypeP
|
||||
| TupleTypeP of type_f * type_f
|
||||
| VariableTypeP of variable_type ref
|
||||
| FunctionTypeP of type_f * type_f
|
||||
| ApplicationP of type_f * type_f
|
||||
and variable_type =
|
||||
Unbound of id * level
|
||||
| Link of type_f
|
||||
| Generic of id
|
||||
|
||||
type env = type_f VariableMap.t
|
||||
module IntegerMap = Map.Make(Int)
|
||||
|
||||
let pp_type_f (ty: type_f) : string =
|
||||
let id_name_map = ref IntegerMap.empty in
|
||||
let count = ref 0 in
|
||||
let next_name () =
|
||||
let i = !count in
|
||||
incr count;
|
||||
Utility.from_int_to_string i
|
||||
in
|
||||
let rec aux is_simple ty =
|
||||
match ty with
|
||||
| IntegerTypeP -> "Int"
|
||||
| BooleanTypeP -> "Bool"
|
||||
| TupleTypeP (ty1, ty2) ->
|
||||
"(" ^ aux is_simple ty1 ^ ", " ^ aux is_simple ty2 ^ ")"
|
||||
| ApplicationP (ty, ty_arg) ->
|
||||
aux true ty ^ "(" ^ aux false ty_arg ^ ")"
|
||||
| FunctionTypeP (ty_arg, ty) ->
|
||||
let ty_arg_str = aux true ty_arg in
|
||||
let ty_str = aux false ty in
|
||||
let str = ty_arg_str ^ " -> " ^ ty_str in
|
||||
if is_simple then "(" ^ str ^ ")" else str
|
||||
| VariableTypeP {contents = Generic id} -> (
|
||||
match IntegerMap.find_opt id !id_name_map with
|
||||
| Some a -> a
|
||||
| None ->
|
||||
let name = next_name () in
|
||||
id_name_map := IntegerMap.add id name !id_name_map;
|
||||
name
|
||||
)
|
||||
| VariableTypeP {contents = Unbound (id, _)} ->
|
||||
"_" ^ string_of_int id
|
||||
| VariableTypeP {contents = Link ty} ->
|
||||
aux is_simple ty
|
||||
in
|
||||
let ty_str = aux false ty in
|
||||
if !count > 0 then
|
||||
let var_names =
|
||||
IntegerMap.fold (fun _ value acc -> value :: acc) !id_name_map []
|
||||
in
|
||||
"∀ " ^ (String.concat " " (List.sort String.compare var_names))
|
||||
^ ", " ^ ty_str
|
||||
else
|
||||
ty_str
|
||||
|
||||
(* -------------------------------------------------------------------------- *)
|
||||
|
||||
type ftype = (* type used for specification *)
|
||||
IntegerType
|
||||
| BooleanType
|
||||
| TupleType of ftype * ftype
|
||||
| PolimorphicType of string
|
||||
| FunctionType of ftype * ftype
|
||||
type fsubstitution = (* goes from polimorphic types to types *)
|
||||
ftype VariableMap.t
|
||||
type fenvironment = (* goes from variables to types *)
|
||||
ftype VariableMap.t
|
||||
type typingshape = (* tuple of a simple type environment and a simple type *)
|
||||
fenvironment * ftype
|
||||
|
||||
type t_exp =
|
||||
Integer of int (* x := a *)
|
||||
|
||||
@ -5,73 +5,81 @@ val globalIdentifier : int ref
|
||||
module VariableMap : Map.S with type key = variable
|
||||
module VariableSet : Set.S with type elt = string
|
||||
|
||||
type ftype =
|
||||
(* -------------------------------------------------------------------------- *)
|
||||
(* polimporphic type checking types *)
|
||||
(* -------------------------------------------------------------------------- *)
|
||||
|
||||
type id = int
|
||||
type level = int
|
||||
|
||||
type type_f =
|
||||
IntegerTypeP
|
||||
| BooleanTypeP
|
||||
| TupleTypeP of type_f * type_f
|
||||
| VariableTypeP of variable_type ref
|
||||
| FunctionTypeP of type_f * type_f
|
||||
| ApplicationP of type_f * type_f
|
||||
and variable_type =
|
||||
Unbound of id * level
|
||||
| Link of type_f
|
||||
| Generic of id
|
||||
|
||||
type env = type_f VariableMap.t
|
||||
module IntegerMap : Map.S with type key = int
|
||||
|
||||
val pp_type_f : type_f -> string
|
||||
|
||||
(* module VariableTypeMap : Map.S with type key = variable_type *)
|
||||
|
||||
(* type substitution = (\* from variable types to politypes *\) *)
|
||||
(* politype VariableTypeMap.t *)
|
||||
|
||||
(* type prefix = *)
|
||||
(* | Lambda *)
|
||||
(* | Let *)
|
||||
(* | LetRec *)
|
||||
|
||||
(* type typed_prefix = *)
|
||||
(* (\* list of free variables in the context and the associated type *\) *)
|
||||
(* (prefix * politype) VariableMap.t *)
|
||||
|
||||
(* -------------------------------------------------------------------------- *)
|
||||
|
||||
type ftype = (* type used for specification *)
|
||||
IntegerType
|
||||
| BooleanType
|
||||
| TupleType of ftype * ftype
|
||||
| PolimorphicType of variable
|
||||
| FunctionType of ftype * ftype
|
||||
type fsubstitution = (* goes from polimorphic types to types *)
|
||||
ftype VariableMap.t
|
||||
type fenvironment = (* goes from variables to types *)
|
||||
ftype VariableMap.t
|
||||
type typingshape = (* tuple of a simple type environment and a simple type *)
|
||||
fenvironment * ftype
|
||||
|
||||
type intermediaryType =
|
||||
IInteger
|
||||
| IBoolean
|
||||
| IVariable of variable
|
||||
| IFunction of variable list * ftype list * intermediaryType
|
||||
| IApplication of intermediaryType * intermediaryType list
|
||||
| IPlus of intermediaryType * intermediaryType
|
||||
| IMinus of intermediaryType * intermediaryType
|
||||
| ITimes of intermediaryType * intermediaryType
|
||||
| IDivision of intermediaryType * intermediaryType
|
||||
| IModulo of intermediaryType * intermediaryType
|
||||
| IPower of intermediaryType * intermediaryType
|
||||
| IPowerMod of intermediaryType * intermediaryType * intermediaryType
|
||||
| IRand of intermediaryType
|
||||
| IBAnd of intermediaryType * intermediaryType
|
||||
| IBOr of intermediaryType * intermediaryType
|
||||
| IBNot of intermediaryType
|
||||
| ICmp of intermediaryType * intermediaryType
|
||||
| ICmpLess of intermediaryType * intermediaryType
|
||||
| ICmpLessEq of intermediaryType * intermediaryType
|
||||
| ICmpGreater of intermediaryType * intermediaryType
|
||||
| ICmpGreaterEq of intermediaryType * intermediaryType
|
||||
| IIfThenElse of intermediaryType * intermediaryType * intermediaryType
|
||||
| ILetIn of variable * ftype * intermediaryType * intermediaryType
|
||||
| ILetFun of variable * ftype * variable list * ftype list * intermediaryType * intermediaryType
|
||||
|
||||
type t_exp =
|
||||
Integer of int (* x := a *)
|
||||
| Boolean of bool (* v *)
|
||||
| Variable of variable (* x *)
|
||||
| Tuple of t_exp * t_exp (* (a, b) *)
|
||||
| Function of variable * ftype * t_exp (* lambda x: t. x *)
|
||||
| Application of t_exp * t_exp (* x x *)
|
||||
| Plus of t_exp * t_exp (* x + x *)
|
||||
| Minus of t_exp * t_exp (* x - x *)
|
||||
| Times of t_exp * t_exp (* x * x *)
|
||||
| Division of t_exp * t_exp (* x / x *)
|
||||
| Modulo of t_exp * t_exp (* x % x *)
|
||||
| Power of t_exp * t_exp (* x ^ x *)
|
||||
| PowerMod of t_exp * t_exp * t_exp (* (x ^ x) % x *)
|
||||
| Rand of t_exp (* rand(0, x) *)
|
||||
| BAnd of t_exp * t_exp (* x && x *)
|
||||
| BOr of t_exp * t_exp (* x || x *)
|
||||
| BNot of t_exp (* not x *)
|
||||
| First of t_exp (* fst x *)
|
||||
| Second of t_exp (* scn x *)
|
||||
| Cmp of t_exp * t_exp (* x == x *)
|
||||
| CmpLess of t_exp * t_exp (* x < x *)
|
||||
| CmpLessEq of t_exp * t_exp (* x <= x *)
|
||||
| CmpGreater of t_exp * t_exp (* x > x *)
|
||||
| CmpGreaterEq of t_exp * t_exp (* x >= x *)
|
||||
| IfThenElse of t_exp * t_exp * t_exp (* if b then c else c *)
|
||||
| LetIn of variable * t_exp * t_exp (* let x = x in x *)
|
||||
| LetFun of variable * variable * ftype * t_exp * t_exp (* let rec x. y: t. x in x*)
|
||||
Integer of int (* x := a *)
|
||||
| Boolean of bool (* v *)
|
||||
| Variable of variable (* x *)
|
||||
| Tuple of t_exp * t_exp (* (a, b) *)
|
||||
| Function of variable * ftype * t_exp (* lambda x: t. x *)
|
||||
| Application of t_exp * t_exp (* x x *)
|
||||
| Plus of t_exp * t_exp (* x + x *)
|
||||
| Minus of t_exp * t_exp (* x - x *)
|
||||
| Times of t_exp * t_exp (* x * x *)
|
||||
| Division of t_exp * t_exp (* x / x *)
|
||||
| Modulo of t_exp * t_exp (* x % x *)
|
||||
| Power of t_exp * t_exp (* x ^ x *)
|
||||
| PowerMod of t_exp * t_exp * t_exp (* (x ^ x) % x *)
|
||||
| Rand of t_exp (* rand(0, x) *)
|
||||
| BAnd of t_exp * t_exp (* x && x *)
|
||||
| BOr of t_exp * t_exp (* x || x *)
|
||||
| BNot of t_exp (* not x *)
|
||||
| First of t_exp (* fst x *)
|
||||
| Second of t_exp (* scn x *)
|
||||
| Cmp of t_exp * t_exp (* x == x *)
|
||||
| CmpLess of t_exp * t_exp (* x < x *)
|
||||
| CmpLessEq of t_exp * t_exp (* x <= x *)
|
||||
| CmpGreater of t_exp * t_exp (* x > x *)
|
||||
| CmpGreaterEq of t_exp * t_exp (* x >= x *)
|
||||
| IfThenElse of t_exp * t_exp * t_exp (* if b then c else c *)
|
||||
| LetIn of variable * t_exp * t_exp (* let x = x in x *)
|
||||
| LetFun of variable * variable * ftype * t_exp * t_exp
|
||||
(* let rec x. y: t. x in x*)
|
||||
|
||||
type permitted_values =
|
||||
IntegerPermitted of int
|
||||
|
||||
@ -5,7 +5,7 @@
|
||||
(explain true)
|
||||
(infer true)
|
||||
(flags --dump --table)
|
||||
)
|
||||
)
|
||||
|
||||
(library
|
||||
(name miniFun)
|
||||
|
||||
@ -5,7 +5,7 @@
|
||||
(explain true)
|
||||
(infer true)
|
||||
(flags --dump --table)
|
||||
)
|
||||
)
|
||||
|
||||
(library
|
||||
(name miniImp)
|
||||
|
||||
Reference in New Issue
Block a user